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S
ince the first synthesis of colloidal semi-
conductor nanocrystals (NCs),1 there is
an ever-increasing interest in colloidal

nanomaterials owing to their unique optical
and electronic features that enable advanced
optoelectronic devices.2�6 The physical prop-
erties of the colloidal semiconductors can be
engineeredby tailoring their size and shape in
addition to composition. There are previous
reports that studied strongly size-dependent
optical properties in colloidal quantum dots
including extinction coefficient, photolumi-
nescence quantum efficiency (PL-QE), and
multiexciton kinetics in relation to non-
radiativeAuger recombination.7�15 Recently,
a new type of atomically flat nanocrystalline
colloids known as solution-processed nano-
platelets (NPLs), or colloidal quantum wells,

has been introduced.16 The NPLs have lateral
dimensions that are much larger than the
exciton Bohr radius of the material (i.e., CdSe,
CdTe, CdS, etc.) and also than their well-
defined and well-controlled vertical thick-
nesses, typically of several monolayers
(MLs).16,17 Therefore, there exists strong
quasi-1Dquantumconfinement in theseNPLs.
Semiconductor NPLs offer advantageous

optical properties including narrow photo-
luminescence emission at room tempera-
ture (full-width at half-maximum as small as
30 meV) together with their giant oscillator
strength, which are tunable by controlling
their vertical thickness.17�23 Thanks to these
favorable features, the NPLs have become
appealing for numerous applications includ-
ing light-emitting diodes24 and colloidal
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ABSTRACT Here, we systematically investigated the sponta-

neous and stimulated emission performances of solution-processed

atomically flat quasi-2D nanoplatelets (NPLs) as a function of their

lateral size using colloidal CdSe core NPLs. We found that the

photoluminescence quantum efficiency of these NPLs decreases with

increasing lateral size while their photoluminescence decay rate

accelerates. This strongly suggests that nonradiative channels

prevail in the NPL ensembles having extended lateral size, which is well-explained by the increasing number of the defected NPL subpopulation.

In the case of stimulated emission the role of lateral size in NPLs influentially emerges both in the single- and two-photon absorption (1PA and 2PA)

pumping. In the amplified spontaneous emission measurements, we uncovered that the stimulated emission thresholds of 1PA and 2PA exhibit completely

opposite behavior with increasing lateral size. The NPLs with larger lateral sizes exhibited higher stimulated emission thresholds under 1PA pumping due to

the dominating defected subpopulation in larger NPLs. On the other hand, surprisingly, larger NPLs remarkably revealed lower 2PA-pumped amplified

spontaneous emission thresholds. This is attributed to the observation of a “giant” 2PA cross-section overwhelmingly growing with increasing lateral size

and reaching record levels higher than 106 GM, at least an order of magnitude stronger than colloidal quantum dots and rods. These findings suggest that

the lateral size control in the NPLs, which is commonly neglected, is essential to high-performance colloidal NPL optoelectronic devices in addition to the

vertical monolayer control.

KEYWORDS: semiconductor nanoplatelets . colloidal quantum wells . lateral size . photoluminescence quantum efficiency .
amplified spontaneous emission . stimulated emission . giant two-photon absorption cross-section
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lasers.25�28 To date, core-only NPLs have been exten-
sively studied because of their optimized synthesis
conditions available in the literature. Among various
investigated properties are electroabsorption,29 aniso-
tropic optical properties,30 recombination dynamics,18

controlled stacking,31 and excitonic interaction be-
tween NPLs.32 Additionally, various heterostructures
have been developed and studied in the form of core/
shell and core/crown architectures, allowing for further
excitonic engineering.19,21,33�35 Thus far, vertical-
thickness-dependent optical properties have been
heavily studied including photoluminescence decay
kinetics,18,20,22,36,37 temperature-dependent trends,17,18

and exciton�phonon coupling.23 For example, in the
core/crown CdSe/CdS NPLs, optimization of the lateral
extent of the crown layer has been shown to be crucial
for the stimulated emission.26 Also, it was reported
that increasing the lateral area alters the optical
properties of the core/crown CdSe/CdTe NPLs having
type II electronic structure.33,38 In addition, increasing
the lateral size in the NPLs has been shown to increase
the oscillator strength transition at low temperatures.39

Furthermore, in the case of the stackedNPLs, the ratio of
the phonon emission line intensity to themain emission
line increases with increasing lateral size at cryogenic
temperature.40 However, the lateral size dependency of
spontaneous emission kinetics and efficiency or stimu-
lated emission performance in CdSe NPLs have not
been studied nor elucidated yet. Although the strong
quantum confinement in these NPLs is only in the
vertical direction, it has thus far remained unknown to
what extent the lateral dimensions would affect the
optical and excitonic properties in the NPLs and how
critical the lateral size is in spontaneous and stimulated
emission processes, which are crucial for high perfor-
mance in light-generating device applications.
Here, we report the systematic lateral size study

of optical and excitonic properties of CdSe NPLs in
the weak lateral confinement regime for both sponta-
neous and stimulated emissions. We synthesized CdSe
NPLs having different lateral sizes. We observed that
the spontaneous emission spectra of the NPLs do not
exhibit any significant spectral shift as their lateral size
is extended. However, the photoluminescence decay
rate was found to strongly accelerate, and PL-QE of
these NPLs was observed to considerably decrease with
increasing lateral size. These observations strongly sug-
gest the increasing overall nonradiative decay with
increasing lateral area. To explain these observations,
we have analyzed the PL decay kinetics via considering
defected and nondefected NPL subpopulations, reveal-
ing that the defected NPL population fraction in-
creases more than 2-fold as the lateral area is increased.
With this understanding, we systematically studied
both single- and two-photon absorption pumping with
increasing lateral size. The NPL ensembles having a
smaller defected NPL fraction exhibit a lower amplified

spontaneous emission threshold under single-photon
absorption pumping, whereas the NPLs with the larger
lateral size achieve a lower threshold for two-photon
absorption pumping owing to the giant nonlinear
absorption cross-section as high as 2 � 106 GM.

RESULTS AND DISCUSSION

The synthesis of CdSe core-only NPLs having zinc-
blende crystal structure was carried out using a mod-
ified recipe.19 CdSe NPLs having different lateral sizes
were synthesized using the same recipe with different
growth times (seeMethods for detail). The vertical thick-
ness and themean lateral size of the NPLs are extracted
from the transmission electron microscopy images
(Figure 1). The synthesized CdSe NPLs have the same
vertical thickness (∼1.2 nm) corresponding to 4 MLs.
This is consistent with the photoluminescence and
absorbance peaks in Figure 2.18,30 The lateral sizes of
the NPLs were analyzed to be 170.0( 22.5 nm2 (NPL-1),
269.6( 38.6 nm2 (NPL-2), 377.6( 56.4 nm2 (NPL-3), and
391.9 ( 65.7 nm2 (NPL-4).
Figure 2 shows the absorbance and steady-state

photoluminescence spectra of the NPLs in hexane
at room temperature. For each NPL, the absorbance
spectrum exhibits two peaks: a sharp peak at 512 nm
and the broader peak at 480 nm, corresponding to the
electron�heavy hole (e�hh) and the electron�light
hole (e�lh) transitions, respectively. The photolumines-
cence spectra show a single narrow peak at 513 nm,
resulting from the radiative recombination at the
electron�heavy hole transition,17with a very small Stokes
shift (∼1 nm). As the lateral size of the NPLs grows larger,
the photoluminescence emission peak does not change
its spectral position. Also, the full-width-at-half-maxima

Figure 1. Transmission electron microscopy images of the
4 ML CdSe NPLs having different lateral sizes: (a) 170.0 (
22.5 nm2 (NPL-1), (b) 269.6 ( 38.6 nm2 (NPL-2), (c) 377.6 (
56.4 nm2 (NPL-3), and (d) 391.9 ( 65.7 nm2 (NPL-4), grown
using different growth times.
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(fwhm) of the photoluminescence emission peaks
remains unchanged (∼8 nm). Detailed information
for the absorption and photoluminescence spectra is
given in the Supporting Information (see Table S1).
Having the same features in the UV�vis and the
photoluminescence spectra with growing lateral size
suggests weak quantum confinement in the lateral
plane owing to the fact that the lateral dimensions are
much larger than the exciton Bohr radius of CdSe.39,41

To understand the fluorescence decay kinetics of
the NPLs as a function of the changing lateral size,
time-resolved fluorescence spectroscopy using the
time-correlated single photon counting system was
performed (Figure 3). Here we used a pulsed pump
laser (375 nm, 2.5 MHz repetition rate, <100 ps pulse
width) to excite the diluted NPL solutions in hexane.
The exciton density per NPL is very small (ÆNæ, 1) due
to the very low intensity of the pump laser. Figure 3a
shows the fluorescence decay curves measured at the
peak emission wavelength (∼513 nm) of the NPLs for
four different samples. The fluorescence decay curves
of the NPLs were numerically fitted with multiexpo-
nential decay functions, indicating the presence of
multiple decay channels in the ensemble of the NPLs.
The fitting parameters are given in Table S2. The
multiexponential decay behavior in both a single NPL
and anensemble of NPLswaspreviously reported.23,37,41

Tessier et al. have performed single-NPL-based time-
resolved fluorescence spectroscopy and measured PL
decay curves that could be fitted by three-exponential
decay functions.41 This indicates that individual NPLs
exhibit complex decay dynamics possibly due to the
presence of more than one radiative channel (i.e., direct
radiative recombination and trap-related radiative re-
combination) in addition to nonradiative (i.e., electron
and hole traps) channels present in the NPL ensembles.
Figure 3b presents the fluorescence lifetime compo-
nents of the measurement in different NPL ensembles

of varying mean lateral size. These four exponential
decay components have distinct lifetimes: ∼90, ∼16,
∼4, and ∼0.5 ns. The amplitude-averaged photolumi-
nescence lifetime (τav) of the NPL ensembles with
increasing lateral size is presented in Figure 3c, showing
that the τavdecreases from7.61ns to 2.73ns as themean
lateral size of theNPLs is increased. This shortening in the
photoluminescence lifetime was previously reported in
epitaxial quantumwells thatwas studied as a function of
well thickness.42 In the colloidal NPLs, photolumines-
cence lifetime has been studied as a function of tem-
perature, revealing the giant oscillator strength transition
in these materials, although lateral size dependence has
not been understood to date.17,39,41

One possible hypothesis to explain the accelerated
photoluminescence decay rates with extended lateral
size is the increasing radiative rates due to increasing
oscillator strength. To check this hypothesis, photo-
luminescence quantum efficiency of different NPL
ensembles was measured using a reference dye, rho-
damine 6G (Rh6G), having 95%PL-QE in its very diluted
ethanol solution at room temperature (see Figure S1).
Previously in core-only NPLs, PL-QE was reported to be
30�50%.16,17,27,40,43 However, the relation between
the PL-QE and the lateral size of the NPLs has not been
studied. Here, we find that the PL-QE substantially
decreases from 76.8% to 33.3% as the lateral size
of the NPLs increases (see Figure 3d). This shows that
the hypothesis concerning increasing radiative rates
cannot be correct. Thus, the observed strong decrease
of the PL-QE in the larger lateral size NPLs cannot be
accounted for by the increasing oscillator strength. The
decrease in the PL-QE of the NPLs together with the
accelerated photoluminescence decay rates strongly
suggests the increased overall nonradiative recombina-
tion in these NPLs. A simple calculation (PL-QE =
γRad/(γRad þ γNonrad)) indicates that the effective non-
radiative decay rate increases by 8-fold in the larger
lateral area NPLs (i.e., NPL-4) as compared to the smaller
ones (i.e., NPL-1), whereas the radiative decay rate (and,
thus, the oscillator strength) increases by only 1.2-fold.
To understand the effect of nonradiative recombi-

nation channels in the NPLs, we look into the expo-
nential photoluminescence decay components and
their steady-state contributions, which are quantified
with Ai� τi products (i= 1 to 4), where Ai represents the
amplitude of the exponential decay and τi is its char-
acteristic lifetime, extracted from numerical fits to the
photoluminescence decay curves using the relation

PL(t) ¼ ∑
i

Aie�t=τi

Ai � τi ¼
Z
Aie

�t=τi
(1)

Each Ai � τi term corresponds to the area under
the corresponding exponential decay curve, giving
its specific steady-state contribution within the total

Figure 2. Absorption and photoluminescence spectra
of the 4 ML CdSe NPLs grown in the lateral direction with
different growth times. The peaks labeled as e�lh and e�hh
in the absorption spectrum correspond to the electron�light
hole and the electron�heavy hole transitions, respectively.
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emission. Figure 3e exhibits the fractional change
of the steady-state contribution of each lifetime com-
ponent for four different NPL samples being studied
here. As the size of the NPLs is increased, the relative
contribution of the A4 � τ4 term increases from 3.15%
to 14.94%. The fractional contributions of other lifetime
components (i.e., A1 � τ1, A2 � τ2, and A3 � τ3) are
observed to decrease with increasing lateral size.
An increasing contribution from the A4 � τ4 term as
the PL-QE decreases would strongly imply that the τ4

component, which is the fastest lifetime, is related to a
nonradiative decay channel within theNPL population.
For example, fast hole trapping is widely observed in
Cd-based NCs especially due to poor surface passiv-
ation and Cd vacancies.44�46 Recently, Kunneman et al.
have also shown that a large fraction of the NPL
populations contains NPLs with hole traps exhibiting
lifetimes on the order of 10's or 100's of picoseconds.36

As the lateral size of anNPL is increased, the probability
of finding a hole trap state such as a Cd vacancy within

Figure 3. (a) Time-resolved fluorescence (TRF) decays of the NPLs having different lateral sizes. The inset shows the zoom-in
of the same TRF decay. Evolution of (b) the lifetime components of fluorescence decays, (c) the amplitude-averaged
photoluminescence lifetimes, (d) photoluminescence quantum efficiency (PL-QE), (e) the percentage steady-state contribu-
tion fromeachdecay component of theNPLs, and (f) calculated fraction of NPL subpopulations as a functionof the lateral size.
The dotted lines are a guide for the eyes.
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that NPL would be increasing. Therefore, the popula-
tion fraction of the NPLs having hole traps would be
higher in anNPL ensemble having a largermean lateral
size, which would in turn strongly decrease the en-
semble PL-QE. Recently, we have shown that such
defected NPLs can strongly quench the photolumines-
cence emission of the stacked NPLs due to ultrafast
exciton transport within the stacked NPLs through
Förster resonance energy transfer.31 The lateral-size-
dependent photoluminescence decay components (τi)
and fractional emission contributions ((Ai� τi)/(∑Ai� τi)),
which are listed in Table S2, indicate that while the
lifetime components do not change significantly as a
function of the lateral size (see Figure 3b), the fractional
emission contributions do (see Figure 3e). Therefore,
the amplitude average lifetimes change considerably
with the lateral size. The shortening in the amplitude
average lifetimes might be explained by changing re-
lative contributions of the lifetime components due to
the changing population fractions of the defected and
nondefected NPLs in the ensemble. With increasing
lateral size, the number of defected NPLs grows larger.
As a result, the overall nonradiative channels in the NPL
ensembles are increased with the increased lateral size.
We alsoobserve exactly the same lateral-size-dependent
behavior in the NPL populations synthesized using
the core-seeded approach (see Tables S3 and S4 and
Figure S2 and related discussion in the Supporting
Information). Similarly, such complex PL decay kinetics
have been previously observed in the CdSe NCs47,48 and
in CdSe NPLs31,36 arising due to dynamic surface trap-
ping. Furthermore, the surface trapping in the NCs has
been shown to be highly sensitive to temperature and
timesince these canexcitonically alter theheterogeneity
of the NC populations.
To develop a better insight, we quantitatively calcu-

late the change of the NPL subpopulations for the
different NPL ensembles. Here, we assume that theNPL
population consists of two types of NPLs: nondefected
and defected (i.e., having rapid nonradiative recombi-
nation).31,36 Previously, the Dubertret group has ob-
served the presence of three distinct fluorescence
lifetime components in emissive NPLs via single-particle
measurements.41 These lifetime components match
very well with τ1 (80�100 ns), τ2 (15�18 ns), and τ3
(1�3 ns) lifetime components that we found in our
work. Therefore, we relate these lifetime components
(τ1, τ2, and τ3) as the distinct radiative states in non-
defected NPLs. In the case of defected NPLs, the fastest
lifetime component, τ4 (0.6�0.8 ns), is attributed to the
nonradiative channel (i.e., hole trapping) since its con-
tribution significantly increases (from 3% to 15%) as
the PL-QE of the NPLs decreases. We assume that x% of
the NPL population consists of nondefected NPLs.
and the rest, (1 � x)%, consists of defected NPLs
(see Figure S3). Nondefected NPLs are assumed to have
a PL-QE of 100% and exhibit only τ1, τ2, and τ3 lifetime

components. On the other hand, defected NPLs have
the fast nonradiative lifetime of τ4 in addition to three
distinct radiative lifetime components. The PL-QE in the
defected NPLs is found by considering that the non-
radiative channel (τ4) would compete with each of the
radiative channels (τ1, τ2, and τ3) individually. Therefore,
τ1�τ4, τ2�τ4, and τ3�τ4 combinations (see Figure S3)
would result in PL-QEs (PL-QE = γRad/(γRadþ γNonrad)) of
∼0.7%, ∼3.5%, and ∼18%, respectively. Considering
that these three distinct radiative emission channels
have almost equal contribution to the total radiative
emission, which can be justified by considering their
almost equal fractional emission contributions as shown
in Table S2, the PL-QE of a defected NPL would be
calculated to be∼8%. We match the calculated PL-QEs
to experimentally measured PL-QEs for the different
NPL samples (NPL-1, -2, -3, and -4) via choosing
the population fraction (x%) of the nondefected and
((1� x)%) defected NPLs properly (PL-QE = 100%� xþ
8% � (1 � x)). We observe that NPL-1 has the lowest
defected NPL population fraction (∼30%) since it has
the highest PL-QE. As the lateral area of theNPL samples
increases, the defected NPL population fraction in-
creases up to 70% (for the NPL-4) (see Figure 3f). This
explains the significantly reduced PL-QEs in the larger
lateral area NPLs. Furthermore, to check the consistency
of the calculated defected and nondefected NPL sub-
population fractions with the time-resolved fluores-
cence measurements, we calculated the contribution
of the fluorescence lifetime components to the total
emission of the NPL ensemble (see Table S5) for the two
NPL subpopulations. In this calculation, we assumed the
contributions of the radiative channels τ1, τ2, and τ3 to
the total emission to be almost equal (i.e., 35%, 35%, and
30%, respectively). We justify this by the observation of
the fractional contributions of the τ1, τ2, and τ3 lifetime
components from the experimental data in Table S2. In
the case of the contribution of the lifetime components
to the total emission in the defected NPLs, the presence
of the fast nonradiative τ4 component and the low
PL-QE (∼8%) are considered. In Table S6, we summarize
the calculated emission contributions of all lifetime
components for the four different NPL ensembles, and
the calculated values were compared to the experimen-
tal ones. The calculated emission contributions exhibit a
very goodmatchwith the experimental ones. Therefore,
the change of the population fraction of the defected
NPLs causes the reduced PL-QEs in the increased lateral
areaNPLs. This goodagreement between the calculated
and the experiment data for eachNPL ensemble (NPL-1,
-2, -3, and -4) exhibits strong support for the hypothesis
that the nonradiative decay pathways dictate the de-
creasing trend in the PL-QE due to poorly passivated
surfaces (acting as fast hole traps) becomingdominantly
stronger with increasing lateral size.
Recently, optical gain has been shown in the colloi-

dal NPLs independently by She et al.25 using core/shell
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architecture and Guzelturk et al.26 using core/crown
architecture. A record high optical gain coefficient
among all colloidal optical gain media, which is as high
as 650 cm�1, has been achieved using the core/crown
NPLs.26 Most recently, Grim et al. have shown that
continuous wave pumped optical gain is possible
in the NPL-based gain media.27 These recent works
strongly suggest that colloidal NPLs are extremely
promising materials for lasers.26,27 However, the de-
pendency of the optical gain threshold, at which pump
intensity of the amplified spontaneous emission (ASE)
can be initiated, on the lateral area of the NPLs has
not previously been elucidated. Here, we studied
the optical gain performance of the CdSe NPLs having
varying lateral sizes. To this end, we investigated
both single- and two-photon absorption pumped
ASE (1PA- and 2PA-ASE) in the NPL samplesmentioned
above. We prepared solid film samples of the NPLs
(i.e., NPL-1, NPL-2, NPL-3, and NPL-4) on glass sub-
strates via drop-casting from concentrated solutions.
Single-photon absorption pumped (400 nm, 120 fs,

1 kHz) ASE measurements were performed via using
a stripe excitation configuration to excite the samples
through a cylindrical lens (f = 20 cm). We used a
variable neutral density filter before the cylindrical lens
to adjust the excitation intensity. The pump-intensity-
dependent emission spectra are presented in Figure 4a
for the exemplary case of NPL-1. In 4 ML thick CdSe
NPLs, the ASE peak was observed at ∼532 nm arising
due to the biexcitonic optical gain.26,27 Here, in accor-
dance with the previous reports, we observed a red-
shifted ASE peak that has a fwhm as narrow as 6 nm
at room temperature.The transition from the sponta-
neous emission to the stimulated emission is visible for
the excitation intensities higher than 45 μJ/cm2. The
emission intensity vs single-photon pump intensity
measurements are shown in Figure 4b for all of the
NPLs. The 1PA-ASE threshold is the lowest for the
NPL-1, which has the smallest lateral size. As the lateral
size is increased, the ASE threshold becomes progres-
sively larger (see Figure 4c). This indicates that for
single-photon absorption pumping there is a strong
correlation between the PL-QEs of the NPLs and the
stimulated emission thresholds. As the NPL lateral size
is increased, the defected NPL (i.e., NPL with a fast
nonradiative trap channel) population also increases in
number. Therefore, in the dense solid-state films of the
NPLs, which are required for optical gain purposes,
strong nonradiative energy transfer among the same
type of NPLs can quench the emission considerably.31

Thus, NPL populations having a lower defected NPL
fraction will be favorable for optical gain and light-
generation application.
We also performed two-photon absorption pumping

(800 nm, 120 fs, 1 kHz) to realize frequency up-
convertedASE in theNPLs,which is interesting fornonlinear
optical applications including frequency up-converted

lasers and bioimaging. Recently, 2PA-ASE has been
shown to be possible in the NPLs by our group.26

However, the lateral size dependency of the frequency
up-converted optical gain has not been considered
before. In the nonlinear processes, such as two-photon
absorption, the physical volumebecomes critical.28,49�51

Therefore, one might expect to observe different trends
for the two-photon-pumped optical gain performance
of the NPLs as compared to single-photon pumping.
Figure 4d shows the emission spectra of the exemplary
case of NPL-4 for different pump intensities, revealing
the transition from spontaneous to stimulated emission.
The emission intensity vs two-photon pump intensity
measurements are depicted for all fourNPLs in Figure 4e.
The 2PA-ASE threshold is found to be the lowest for
NPL-4, which has the largest lateral size. As the lateral
size is decreased, the threshold for ASE increases
(see Figure 4f). This shows an opposite trend of that
of 1PA-ASE. Increasing the lateral size of the NPLs is
important for boosting the nonlinear optical response.
Therefore, larger area NPLs offer better response in
terms of optical gain threshold despite the increasing
overall nonradiative decay channels in the ensemble.
The single- and two-photon absorption pumped ASE
thresholds are given in Table S7.
To understand the trend of decreasing 2PA-ASE

threshold with increasing lateral size, we measured
the two photon absorption (2PA) cross-section of the
NPL ensembles by open-aperture z-scan technique
(see the SI for the details of the experiment). We
dissolved 0.497 μM (NPL-2) and 0.299 μM (NPL-4)
solutions of the NPL ensembles in hexane in a 1 mm
quartz cuvette. The concentrations of the NPL solu-
tions were determined via analysis of the concentra-
tion by the elemental analysis using inductively
coupled plasma optical emission spectroscopy. We
fit the normalized transmittance data using eq S1. The
two-photon absorption cross-section of the smaller
NPL ensemble (NPL-2) is found to be 0.537 � 106 GM
(1 GM = 10�58 m4 � s � photon�1), while 2.247 � 106

GM is measured for the largest NPL ensemble (NPL-4).
This comparative measurement shows that the 2PA
cross-section grows overwhelmingly stronger with in-
creasing lateral size and reaches extraordinarily high
levels. To the best of our knowledge, this “giant” two-
photon absorption cross-section measured in our larg-
est NPL ensemble is the highest reported nonlinear
absorption cross-section in all colloidal semiconductor
NCs. Previously, in the case of colloidal quantum dots,
a two-photon absorption cross-section was measured
to be up to 50000 GM.28 In the case of colloidal nano-
rods, the two-photon absorption cross-section was
found to be as high as 2.3 � 105 GM.52 In the organic
semiconductors, the maximum two-photon absorption
cross-section was reported up to 106 GM.53 Therefore,
this giant two-photon absorption cross-section makes
colloidal NPLs highly attractive and suitablematerials for
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bioimaging in deep tissues via using near-infrared (NIR)
sources. To understand the observed unprecedented
nonlinear optical properties further, our detailed studies
are currently ongoing.

CONCLUSION

In summary, we have investigated the effect of
lateral size variation on the optical and excitonic
properties of the colloidal CdSe NPLs having 4 ML of
thickness for both spontaneous and stimulated emis-
sions. In the spontaneous emission, we found an
accelerating photoluminescence decay rate and de-
creasing PL-QE at room temperature with increasing
lateral size. Contrary to expectations, this reveals that
the nonradiative channels dictate the observed trend

Figure 4. (a) Single-photon absorption (1PA) pumped ASE of the 4 ML CdSe NPLs (NPL-1) having a lateral size of 170.0 nm2.
(b) 1PA-pumped luminescence vs pump intensity of the NPLs having different lateral size. (c) Evolution of the 1PA-pumped
ASE thresholdswith lateral size. (d) Two-photon absorption (2PA) pumpedASE of the NPL-4 having a lateral size of 391.9 nm2.
(e) 2PA-pumped luminescence vs pump intensity of the NPLs having different lateral size. (f) Evolution of the 2PA-pumped
ASE thresholds with lateral size. The dotted lines are a guide for the eyes. The 1PA- and 2PA-ASE thresholds exhibit opposite
trends for varying lateral size.

Figure 5. Comparative open-aperture z-scan measurement
of theNPL ensembles having lateral areas of 269.6 nm2 (NPL-2)
and391.9nm2 (NPL-4). Thefit of the z-scanmeasurementgives
a giant two-photon absorption cross-section of 0.537 � 106

GMand 2.247� 106 GM for the NPL-2 andNPL-4, respectively.
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due to increasing fraction of the defected NPL sub-
population with extended lateral size. In the case of
stimulated emission, both the single- (1PA) and two-
photon absorption (2PA) pumping ASE measurements
exhibit size-dependent behavior. However, their ASE
threshold trends over varying laterals size are comple-
tely opposite. The NPLs with a larger lateral size show a
higher threshold in 1PA-pumped ASE due to their
decreased quantum efficiency, as compared to the
smaller ones. On the other hand, the larger NPLs enable
a lower threshold in 2PA-pumped ASE owing to their
strongly increased nonlinear absorption cross-section.
This increase is so large that the nonlinear absorption
cross-section reaches record high levels above 106 GM.

Lateral size control of the NPLs, therefore, proves
to be critical in the resulting optical and excitonic
properties. The vertical dimension of the NPLs, though
leading to the strong quantum confinement, does not
alone set the properties of spontaneous and stimu-
lated emissions. In particular, a careful selection of
the NPL lateral size is essential to low-threshold 1PA-
and 2PA-ASE. Also, the “giant” nonlinear absorption
cross-section observed in the NPLs, measured here as
high as 2.25� 106 GM for a lateral size of∼392 nm2, is
at least an order of magnitude stronger than those
of colloidal quantum dots and rods reported to date.
We believe that these new findings will help to realize
high-performance solution-processed NPL devices.

METHODS
Synthesis of the 4 ML CdSe NPLs. For a typical synthesis, 170 mg

of cadmium myristate, 12 mg of selenium, and 15 mL of
octadecene (ODE) are loaded into a three-neck flask. After
evacuation of the mixed solution at room temperature for 1 h,
it is heated to 240 �C under argon atmosphere. When the
temperature reaches 195 �C, the color of the solution becomes
yellowish, and 55 mg of cadmium acetate dihydrate is intro-
duced swiftly into the reaction. After 2, 4, 6, and 8min of growth
of CdSe NPLs for NPL-1, NPL-2, NPL-3, and NPL-4 at 240 �C,
respectively, the reaction is stopped and cooled to room tem-
perature with the injection of 0.5 mL of oleic acid (OA). The
resulting 4 ML CdSe NPLs are separated by other reaction
products with successive purification steps. First, the result-
ing mixture is centrifuged at 14 500 rpm for 10 min, and the
supernatant is removed from the centrifuge tube. The precipi-
tate is dried under nitrogen, dissolved in hexane, and centri-
fuged again at 4500 rpm for 5 min. In the second step, the
supernatant is separated into another centrifuge tube, and
ethanol is added into the supernatant solution until it becomes
turbid. In the last step, after the turbid solution is centrifuged at
4500 rpm for 5 min, the precipitate is dissolved in hexane and
filtered with a 0.20 μm filter.

Core-Seeded Approach for Growth of the 4 ML CdSe NPLs in Lateral
Dimensions. The synthesis of the 4 ML CdSe having different
lateral sizes with the crown-like growth process is performed
with the injection of cadmium and selenium precursors, which
are prepared with a modified recipe.19 The starting core-only
4 ML CdSe NPLs (csNPL-1) are synthesized using 40 mg of
cadmium acetate dihydrate for 5 min growing time. A certain
amount of NPLs that is dissolved in hexane and 5 mL of ODE is
loaded into a three-neck flask. The solution is degassed to
remove all hexane, water, and oxygen inside the solution. Then,
under an argon atmosphere, the solution is heated to 240 �C.
When the temperature reaches 240 �C, 0.25 mL (for csNPL-2)
and 0.50 mL (for csNPL-3) of Cd�Se precursors are injected
at a rate of 4 mL/h. After the injection of Cd�Se precursors, the
reaction is stopped with the injection of 0.5 mL of OA and the
system is cooled to room temperature. The resulting NPLs are
purified with successive purification steps as described before.

Conflict of Interest: The authors declare no competing
financial interest.

Supporting Information Available: Detailed information
about the absorption and photoluminescence spectra and
numerical analysis of time-resolved fluorescence of all samples
used in this study, details of the PL-QEmeasurements, calculation
of NPL subpopulation fractions and their lifetime contributions,
both single- and two-photon absorption pumped ASE threshold
values of the NPLs having different lateral sizes, and details of the
open-aperture z-scan measurements. The Supporting Informa-
tion is available free of charge on the ACS Publications website at
DOI: 10.1021/acsnano.5b01927.

Acknowledgment. The authors would like to thank the
Singapore National Research Foundation for financial support
under the programs of NRF-RF-2009-09 andNRF-CRP-6-2010-02
and the Science and Engineering Research Council, Agency for
Science, Technology and Research (A*STAR) of Singapore
(project nos. 092 101 0057 and 112 120 2009), EU-FP7 Nano-
photonics4Energy NoE, and TUBITAK EEEAG 109E002, 109E004,
110E010, 110E217, 112E183, and 114E410. H.V.D. acknowledges
support from ESF-EURYI and TUBA-GEBIP.

REFERENCES AND NOTES
1. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and

Characterization of NearlyMonodisperse CdE (E = S, Se, Te)
Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993,
115, 8706–8715.

2. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-Emitting
Diodes Made from Cadmium Selenide Nanocrystals and a
Semiconducting Polymer. Nature 1994, 370, 354–357.

3. Klimov, V. I.; Mikhailosvsky, A. A.; Xu, S.; Malko, A.;
Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi,
M. G. Optical Gain and Stimulated Emission in Nanocrystal
Quantum Dots. Science 2000, 290, 314–317.

4. Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H.-Y.; Gao, J.;
Nozik, A. J.; Beard, M. C. Peak External Photocurrent
QuantumEfficiency Exceeding100% viaMEG inaQuantum
Dot Solar Cell. Science 2011, 334, 1530–1533.

5. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.;
Wang, J.; Peng, X. Solution-Processed, High-Performance
Light-Emitting Diodes Based on Quantum Dots. Nature
2014, 515, 96–99.

6. Lim, J.; Jeong, B. G.; Park, M.; Kim, J. K.; Pietryga, J. M.; Park,
Y.-S.; Klimov, V. I.; Lee, C.; Lee, D. C.; Bae, W. K. Influence of
Shell Thickness on the Performance of Light-Emitting
Devices Based on CdSe/Zn1-X CdX S Core/Shell Hetero-
structured Quantum Dots. Adv. Mater. 2014, 26, 8034–
8040.

7. Norris, D.; Bawendi, M. Measurement and Assignment of
the Size-Dependent Optical Spectrum in CdSe Quantum
Dots. Phys. Rev. B 1996, 53, 16338–16346.

8. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determi-
nation of the Extinction Coefficient of CdTe, CdSe, and CdS
Nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

9. Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov,
V. I. Universal Size-Dependent Trend in Auger Recombina-
tion in Direct-Gap and Indirect-Gap Semiconductor Nano-
crystals. Phys. Rev. Lett. 2009, 102, 177404.

10. Jasieniak, J.; Smith, L.; vanEmbden, J.;Mulvaney, P.; Califano,
M. Re-examinationof the Size-DependentAbsorptionProp-
erties of CdSe Quantum Dots. J. Phys. Chem. C 2009, 113,
19468–19474.

11. Leistikow, M.; Johansen, J.; Kettelarij, A.; Lodahl, P.;
Vos, W. Size-Dependent Oscillator Strength and Quantum

A
RTIC

LE



OLUTAS ET AL . VOL. 9 ’ NO. 5 ’ 5041–5050 ’ 2015

www.acsnano.org

5049

Efficiency of CdSe Quantum Dots Controlled via the Local
Density of States. Phys. Rev. B 2009, 79, 045301.

12. Gong, K.; Zeng, Y.; Kelley, D. F. Extinction Coefficients,
Oscillator Strengths, and Radiative Lifetimes of CdSe, CdTe,
and CdTe/CdSe Nanocrystals. J. Phys. Chem. C 2013, 117,
20268–20279.

13. Kambhampati, P. Hot Exciton Relaxation Dynamics in
Semiconductor Quantum Dots: Radiationless Transitions
on the Nanoscale. J. Phys. Chem. C 2011, 115, 22089–
22109.

14. Kambhampati, P. Multiexcitons in Semiconductor Nano-
crystals: A Platform for Optoelectronics at High Carrier
Concentration. J. Phys. Chem. Lett. 2012, 3, 1182–1190.

15. Kambhampati, P. Unraveling the Structure and Dynamics
of Excitons in Semiconductor Quantum Dots. Acc. Chem.
Res. 2011, 44, 1–13.

16. Ithurria, S.; Dubertret, B. Quasi 2D Colloidal CdSe Platelets
with Thicknesses Controlled at the Atomic Level. J. Am.
Chem. Soc. 2008, 130, 16504–16505.

17. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.;
Dubertret, B.; Efros, A. L. Colloidal Nanoplatelets with Two-
Dimensional Electronic Structure. Nat. Mater. 2011, 10,
936–941.

18. Biadala, L.; Liu, F.; Tessier, M. D.; Yakovlev, D. R.; Dubertret,
B.; Bayer, M. Recombination Dynamics of Band Edge
Excitons in Quasi-Two-Dimensional CdSe Nanoplatelets.
Nano Lett. 2014, 14, 1134–1139.

19. Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.;
Ithurria, S.; Dubertret, B. Efficient Exciton Concentrators
Built fromColloidal Core/Crown CdSe/CdS Semiconductor
Nanoplatelets. Nano Lett. 2014, 14, 207–213.

20. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.;
Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A.
Bimolecular Auger Recombination of Electron�Hole Pairs
in Two-Dimensional CdSe and CdSe/CdZnS Core/Shell
Nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

21. Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B.
Core/Shell Colloidal Semiconductor Nanoplatelets. J. Am.
Chem. Soc. 2012, 134, 18591–18598.

22. Pelton, M.; Ithurria, S.; Schaller, R. D.; Dolzhnikov, D. S.;
Talapin, D. V. Carrier Cooling in Colloidal Quantum Wells.
Nano Lett. 2012, 12, 6158–6163.

23. Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.;
Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic Struc-
ture and Exciton-Phonon Interaction in Two-Dimensional
Colloidal CdSe Nanosheets. Nano Lett. 2012, 12, 3151–
3157.

24. Chen, Z.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B.
Quasi-2D Colloidal Semiconductor Nanoplatelets for
Narrow Electroluminescence. Adv. Funct. Mater. 2014,
24, 295–302.

25. She, C.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller,
R. D.; Pelton, M.; Talapin, D. V. Low-Threshold Stimulated
Emission Using Colloidal QuantumWells. Nano Lett. 2014,
14, 2772–2777.

26. Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir,
H. V. Amplified Spontaneous Emission and Lasing in
Colloidal Nanoplatelets. ACS Nano 2014, 8, 6599–6605.

27. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.;
Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave
Biexciton Lasing at Room Temperature Using Solution-
Processed Quantum Wells. Nat. Nanotechnol. 2014, 9,
891–895.

28. Guzelturk, B.; Kelestemur, Y.; Gungor, K.; Yeltik, A.; Akgul,
M. Z.; Wang, Y.; Chen, R.; Dang, C.; Sun, H.; Demir, H. V.
Stable and Low-Threshold Optical Gain in CdSe/CdS
Quantum Dots: An All-Colloidal Frequency Up-Converted
Laser. Adv. Mater. 2015, 27, 2741–2746.

29. Achtstein, A. W.; Prudnikau, A. V.; Ermolenko, M. V.;
Gurinovich, L. I.; Gaponenko, S. V.; Woggon, U.; Baranov,
A. V.; Leonov, M. Y.; Rukhlenko, I. D.; Federov, A. V.; et al.
Electroabsorption by 0D, 1D, and 2D Nanocrystals: A
Comparative Study of CdSe Colloidal Quantum Dots,
Nanorods and Nanoplatelets. ACS Nano 2014, 8, 7678–
7686.

30. Abecassis, B.; Tessier, M. D.; Davidson, P.; Dubertret, B. Self-
Assembly of CdSe Nanoplatelets into Giant Micrometer-
Scale Needles Emitting Polarized Light. Nano Lett. 2014,
14, 710–715.

31. Guzelturk, B.; Erden, O.; Olutas-, M.; Kelestemur, Y.; Demir,
H. V. Stacking in Colloidal Nanoplatelets: Tuning Excitonic
Properties. ACS Nano 2014, 8, 12524–12533.

32. Guzelturk, B.; Olutas, M.; Delikanli, S.; Kelestemur, Y.; Erden,
O.; Demir, H. V. Nonradiative Energy Transfer in Colloidal
CdSe Nanoplatelet Films. Nanoscale 2015, 7, 2545–2551.

33. Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret,
B. Type-II CdSe/CdTe Core/Crown Semiconductor Nano-
platelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

34. Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe�CdS Nano-
heteroplatelets with Efficient Photoexcitation of Central
CdSe Region through Epitaxially Grown CdS Wings. J. Am.
Chem. Soc. 2013, 135, 14476–14479.

35. Ithurria, S.; Talapin, D. V. Colloidal Atomic Layer Deposition
(c-ALD) UsingSelf-Limiting Reactions atNanocrystal Surface
Coupled to Phase Transfer between Polar and Nonpolar
Media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

36. Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.;
Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles,
L. D. A. Nature and Decay Pathways of Photoexcited States
in CdSe and CdSe/CdS Nanoplatelets. Nano Lett. 2014, 14,
7039–7045.

37. Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.;
Dubertret, B. Spectroscopy of Colloidal Semiconductor
Core/Shell Nanoplatelets with High Quantum Yield. Nano
Lett. 2013, 13, 3321–3328.

38. Kelestemur, Y.; Olutas, M.; Delikanli, S.; Guzelturk, B.; Akgul,
M. Z.; Demir, H. V. Type-II Colloidal Quantum Wells: CdSe/
CdTe Core/Crown Heteronanoplatelets. J. Phys. Chem. C
2015, 119, 2177–2185.

39. Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.;
Langbein, W. Giant Exciton Oscillator Strength and Radia-
tively Limited Dephasing in Two-Dimensional Platelets.
Phys. Rev. B 2015, 91, 121302(R).

40. Tessier, M. D.; Biadala, L.; Bouet, C.; Ithurria, S.; Abecassis, B.;
Dubertret, B. Phonon Line Emission Revealed by Self-
Assembly of Colloidal Nanoplatelets. ACS Nano 2013,
3332–3340.

41. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.;
Dubertret, B. Spectroscopy of Single CdSe Nanoplatelets.
ACS Nano 2012, 6, 6751–6758.

42. Feldmann, J.; Peter, G.; Gobel, E. O. Linewidth Dependence
of Radiative Exciton Lifetimes in QuantumWells. Phys. Rev.
Lett. 1987, 59, 2337–2340.

43. Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous Transi-
tion from 3D to 1D Confinement Observed during the
Formation of CdSe Nanoplatelets. J. Am. Chem. Soc. 2011,
133, 3070–3077.

44. Hines, D. A.; Kamat, P. V. Quantum Dot Surface Chemistry:
Ligand Effects and Electron Transfer Reactions. J. Phys.
Chem. C 2013, 117, 14418–14426.

45. Knowles, K. E.; Mcarthur, E. A.; Weiss, E. A. A Multi-
Timescale Map of Radiative and Nonradiative Decay Path-
ways for Excitons in CdSe Quantum Dots. ACS Nano 2011,
5, 2026–2035.

46. Vietmeyer, F.; Tchelidze, T.; Tsou, V.; Janko, B.; Kuno, M.
Electric Field-Induced Emission Enhancement and Mod-
ulation in Individual CdSe Nanowires. ACS Nano 2012, 6,
9133–9140.

47. Kambhampati, P. On the Kinetics and Thermodynamics
of Excitons at the Surface of Semiconductor Nano-
crystals: Are There Surface Excitons? Chem. Phys. 2015,
446, 92–107.

48. Mooney, J.; Krause, M. M.; Kambhampati, P. Connecting
the Dots: The Kinetics and Thermodynamics of Hot, Cold,
and Surface-Trapped Excitons in Semiconductor Nano-
crystals. J. Phys. Chem. C 2014, 118, 7730–7739.

49. Cihan, A. F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum,
U.; Yaglioglu, H. G.; Elmali, A.; Demir, H. V. Attractive versus
Repulsive Excitonic Interactions of Colloidal Quantum
Dots Control Blue- to Red-Shifting (and Non-Shifting)

A
RTIC

LE



OLUTAS ET AL . VOL. 9 ’ NO. 5 ’ 5041–5050 ’ 2015

www.acsnano.org

5050

Amplified Spontaneous Emission. J. Phys. Chem. Lett.
2013, 4, 4146–4152.

50. Kelestemur, Y.; Cihan, A. F.; Guzelturk, B.; Demir, H. V.
Type-Tunable Amplified Spontaneous Emission from
Core-Seeded CdSe/CdS Nanorods Controlled by Exciton-
Exciton Interaction. Nanoscale 2014, 6, 8509–8514.

51. Guzelturk, B.; Kelestemur, Y.; Akgul, M. Z.; Sharma,
V. K.; Demir, H. V. Ultralow Threshold One-Photon- and
Two-Photon-Pumped Optical GainMedia of Blue-Emitting
Colloidal Quantum Dot Films. J. Phys. Chem. Lett. 2014, 5,
2214–2218.

52. Xing, G.; Liao, Y.; Wu, X.; Chakrabortty, S.; Liu, X.; Yeow,
E. K. L.; Chan, Y.; Sum, T. C. Ultralow-Threshold Two-Photon
Pumped Amplified Spontaneous Emission and Lasing
from Seeded CdSe/CdS Nanorod Heterostructures. ACS
Nano 2012, 6, 10835–10844.

53. Raymond, J. E.; Bhaskar, A.; Goodson, T.; Makiuchi, N.;
Ogawa, K.; Kobuke, Y. Synthesis and Two-Photon Absorp-
tion Enhancement of Porphyrin Macrocycles. J. Am. Chem.
Soc. 2008, 130, 17212–17213.

A
RTIC

LE


