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T
he phonon-assisted absorption of
light in indirect band-gap semicon-
ductors such as silicon (Si) is a funda-

mentally important optical process, which is
essential to photovoltaic solar conversion.
Optical transitions via phonon assistance in
indirect band-gap silicon, which is the domi-
nant material in photovoltaics today,1 have
been extensively studied. The necessity of
phonons for indirect interband transitions,
however, imposes a significant constraint
on the performance of the silicon-based
solar cells. For increasing the probability
of photon�phonon interaction and, in the
end, enhancing optical absorption of
silicon, there have been numerous efforts
including light trapping,2�4 light field locali-
zation,5,6 and those using external light
sensitizers via transferring photon energy
into silicon.7�10 For the latter purpose,
colloidal quantum dots (QDs) have been

proposed as good external sensitizer ma-
terial systems owing to their favorably large
absorption cross-section and easily tunable
optical properties. To this end, QD sensitiza-
tion on monocrystalline silicon has been pre-
viously demonstrated using radiative
energy transfer (RET) between QDs and
silicon.7,8 Although the sensitization of sili-
con through RET has been shown to lead to
considerable improvement in the absorp-
tion properties of silicon-based devices, it is
fundamentally restricted due to limited cou-
pling of photons emitted by QDs into
silicon.8 Alternatively, Förster resonance en-
ergy transfer (FRET), also known as nonra-
diative energy transfer (NRET) in general,
which relies on near-field dipole�dipole
interaction,11 is a promising method for
the spectral sensitization of silicon viaQDs.11�17

The advantage of these FRET-enabled sen-
sitization systems is the ability of directly
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ABSTRACT We study phonon-assisted Förster resonance energy transfer (FRET) into an

indirect band-gap semiconductor using nanoemitters. The unusual temperature dependence of

this energy transfer, which is measured using the donor nanoemitters of quantum dot (QD) layers

integrated on the acceptor monocrystalline bulk silicon as a model system, is predicted by a

phonon-assisted exciton transfer model proposed here. The model includes the phonon-mediated

optical properties of silicon, while considering the contribution from the multimonolayer-

equivalent QD film to the nonradiative energy transfer, which is derived with a d�3 distance

dependence. The FRET efficiencies are experimentally observed to decrease at cryogenic

temperatures, which are well explained by the model considering the phonon depopulation in

the indirect band-gap acceptor together with the changes in the quantum yield of the donor. These understandings will be crucial for designing FRET-

enabled sensitization of silicon based high-efficiency excitonic systems using nanoemitters.
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coupling the excitation energy in the strongly absorb-
ing QDs to silicon while avoiding the otherwise neces-
sary exciton recombination process in the sensitizer.
Previously, exciton transfer into silicon via FRET has

been verified using time-resolved fluorescence (TRF)
spectroscopy and time-resolved photocurrent mea-
surements.11,15,16 However, this transfer was treated
as the conventional FRET between a luminescent donor
and a luminescent acceptor, although silicon is an
indirect band-gap material and phonons are heavily
involved in the optical transitions within silicon. It has
been unknown to date whether there exists any funda-
mental difference in the underlying mechanism of the
FRET into an indirect band-gap nonluminescent ma-
terial that relies on phonon-mediated absorption.
In this work, we study the phonon-assisted FRET into

indirect band-gap semiconductor silicon as a function
of temperature to elucidate the underpinning physics
behind the dynamics of this exciton transfer process
using the donor nanoemitters integrated on the ac-
ceptor monocrystalline bulk silicon. Here we show that
Förster-type NRET from nanoemitters into the silicon is
a phonon-assisted process, like its optical counterpart
RET. We propose and develop for the first time a
phonon-assisted exciton transfer model that predicts
the temperature-dependent dynamics of FRET in these
QD�Si hybrid structures. Although FRET is an emis-
sionless process, optical properties of the acceptor
strongly modify the dynamics of FRET. The FRET effi-
ciencies are experimentally observed to decrease at
cryogenic temperatures, which are well explained by
the model considering the phonon depopulation in
the indirect band-gap acceptor together with the
changes in the quantum yield (QY) of the donor. These
understandings will be crucial for designing excitonic
sensitization of silicon for high-efficiency light-harvesting
systems.

RESULTS AND DISCUSSION

In this study, we design and fabricate hybrid nano-
structures of a multimonolayer-equivalent film of core/
shell CdSe/ZnS QDs on single-crystal silicon. Figure 1a
depicts the general structure of the working samples.
Here, the bulk monocrystalline p-type silicon (100)
substrate is utilized as the acceptor and the core/shell
CdSe/ZnS QDs as the donor. The QDs were obtained
from Evident Technologies and used without further
purification (20 mg/mL in toluene). The peak emission
wavelength of the QDs is 580 nm with a full-width at
half-maximum (fwhm) of 35 nm. The average radius of
the QDs was obtained to be 2.22 nm from the ensem-
ble high-resolution transmission electron microscopy
(HR-TEM) measurements. The QDs are covered with
hexadecylamine (HDA) ligands having a length of
∼2 nm. The QDs were spin-coated over the Al2O3/
SiO2/Si structures, resulting in the formation of an
approximately 10-monolayer-equivalent QD film as

measured by optical ellipsometry (V-Vase J.A.Woolam).
The QD film is uniformly distributed, as verified by
scanning electron microscopy (SEM) and atomic force
microscopy (AFM), as shown in Figure 1b and c. As
presented by the SEM image in Figure 1b, the top QD
layer is highly packed without any aggregate forma-
tion, indicating the high film quality. The surface cover-
age fraction of the QDs reaches ∼65% as obtained by
analysis of the SEM image in Figure 1b. Furthermore,
AFM images prove that the surface uniformity is quite
high with only one QD (with ligand) thick voids on the
sample (see Figure 1c and height profile). Overall rms
roughness is found to be∼2 nm,which ismuch smaller
than the size of the QDs. Therefore, the QD film
deposited upon silicon is high quality; thus, the sample
can be considered as 10-monolayer-equivalent, although
it is not prepared by layer-by-layer deposition. From
the ensemble TEM images, the center-to-center dis-
tance between two adjacent QDs was estimated to be
6.48 nm, including the interpenetrating ligands. QYs of
the 10-monolayer-equivalent QD film on sapphire and
the diluted QD solution were measured as 25% and
29%, respectively, using an integrating sphere (Horiba
Jobin Yvon PL spectrometer equipped with a QY
measurement setup). The employed single-crystal sili-
con is 0.5 mm thick and possesses approximately
1.65 nm thick native oxide on the top, as verified by
the optical ellipsometrymeasurements. To incorporate
a controlled separation between the QDs and silicon,
we deposited Al2O3 film on precleaned silicon sub-
strates having the native oxide by using the atomic
layer deposition (ALD) technique, which is one of the
most suitable methods to deposit atomically thin
layers conformably and controllably. The film thick-
nesses of the Al2O3 layer were carefully set to 1.0, 2.0,
and 4.0 nm and verified using ellipsometry measure-
ments. In addition, the same amount of QD-coated
sapphire (Al2O3) substrate was utilized as a reference
sample, where no FRET exists. The inset in Figure 1b
shows optical absorption and photoluminescence (PL)
spectra of the QDs when pumped at 350 nm.
While performing the time-resolved fluorescence

spectroscopy, the peak emission wavelength of the
QDs ismonitored via the time-correlated single photon
counting technique. Measurements were performed
for different Al2O3 spacer thicknesses at varying tem-
peratures between 22 and 290 K using a closed-cycle
He cryostat. The optical absorption spectrum of silicon
is also depicted (in log scale in the inset of Figure 1b) to
illustrate the spectral overlap between the silicon's
absorption and the QDs' emission.
Figure 2 depicts the exemplary room-temperature

fluorescence decay curves of the 10-monolayer-equi-
valent film of QDs deposited on the Al2O3/SiO2/Si
layered samples for varying Al2O3 spacer thicknesses
(X = 0.0 to 4.0 nm) and on the sapphire (X = inf). The
corresponding fluorescence lifetimes were also recorded
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as shown in Figure 2. The decay curves are fitted with
multiexponential lifetimes, producing reduced χ2 close to
1, and the exciton lifetimes are calculated via amplitude

averaging, since there is only one type of fluorophore
(i.e., the QDs) in the system. Owing to the increased
dipole�dipole coupling at short donor�acceptor

Figure 1. (a) Schematic of the hybrid nanostructure of multimonolayer QDs and silicon separated by controlled Al2O3

separation thickness. Here, the native SiO2 thickness is 1.65 nm. The thickness of Al2O3 film is varied from 0.0 to
4.0 nm. The QDs of the same monolayer are assumed to have the same exciton transfer contribution to bulk silicon.
(b) SEM image of the QDs furnished on the Al2O3/SiO2/Si structures. Inset shows optical absorption and PL spectra of the
QDs (black and green curves, respectively) and absorption spectrum of silicon (red curve). (c) Atomic force microscopy
image of the 10-monolayer-equivalent QD film on top of silicon with the height profile of the line shown inside the AFM
image.

Figure 2. Experimental fluorescence decays of a 10-monolayer-equivalent QD film on a silicon substrate with a 0.0, 1.0, 2.0,
and 4.0 nmofAl2O3 separation layer and on sapphire as reference sample: (a) over a timewindowof 200 ns and (b) zooming in
the first 50 ns. The multiexponential fits are shown inside the decay curves with the average lifetimes reported.
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separations, as the separation thickness is reduced from
4.0 nm to 0.0 nm, the lifetimes of the QDs decreased,
indicating that FRET becomes stronger at shorter separa-
tion distances (see Figure 2). Moreover, we checked the
interdot FRET, which could be a dominant mechanism for
the thickQD films. In our case, interdot FRET is found to be
weak, since fluorescence lifetimes of the blue- and red-tail
emission do not differ much (up to 2.5-fold) as compared
to the lifetime at the peak emission wavelength. This is
related to the fact that self-spectral overlap is not strong
enough to realize dominant interdot FRET taking into
account the dot-to-dot separation due to the shell and
ligand length (see Supporting Information for more
details). However, as we observed from our trials with
either small sized core or thin shell QDs, where interdot
FRET tends to become dominant, the analysis of the FRET
into silicon is not straightforward.
In this study, we employ five different samples:

10-monolayer-equivalent QDs on top of either sapphire
(reference) or 0.0, 1.0, 2.0, or 4.0 nm Al2O3 separated
SiO2/Si substrates. Temperature-dependent amplitude-
averaged fluorescence lifetimes of the QDs grafted
on these five different substrates are presented in
Figure 3a�d for the cases of 0.0, 1.0, 2.0, and 4.0 nm

thick Al2O3 separation, respectively. Green diamonds
are the experimental reference lifetimes (QDs on sap-
phire: no FRET), which are corrected for the refractive
index difference between sapphire and silicon, causing
radiative energy transfer, the reason for this correction,
which will be explained in the next part. Black squares
are the experimental lifetimes of the QDs when placed
on SiO2/Si with a respective separation thickness. As a
general trend, the lifetimes of the QDs are observed to
increase with decreasing temperature, which is in
agreement with previous reports.18

As stated earlier, fluorescence lifetimes of the QDs
on sapphire (reference sample, green diamonds in
Figure 3) have to be corrected due to refractive index
difference between sapphire and silicon to correctly
account for the reference lifetimes. This effect is sum-
marized in terms of rate equations below:

γAl2O3
¼ γr þ γnr þ γAl2O3, RET (1)

γSi ¼ γr þ γnr þ γSi, RET þ γFRET (2)

γr and γnr are the radiative and nonradiative decay
rates of the QDs in a vacuum. γAl2O3,RET and γSi,RET are
the radiative energy transfer terms arising due to the
difference of the refractive index of the substrate and
the vacuum, which alters the radiative decay rate of the
QDs. RET terms are different for the case of sapphire
and silicon due to the difference of the refractive
indices; therefore we calculate a correction factor for
the reference sample to account for the difference in
refractive indices. For this correction, the model devel-
oped by Chance, Prock, and Silbey, as introduced in
ref 19, is adapted while taking the radiative decay of a
randomly oriented dipole into account in the presence
of reflected electric fields due to the inhomogeneous
environment. The changes of QD lifetimes from on
sapphire to on hypothetical-silicon, having no absorp-
tion component in the dielectric function, were
calculated.17,20 The radiative lifetime of a QD placed
on hypothetical-silicon is decreased by ∼2.1 times as
compared to the one placed on sapphire. In our case,
since a 10-monolayer-equivalent QD film has been
employed as the sample, and the QY of the QD film
was not unity (it is measured as 25%), the correction
factor boils down to a smaller value of ∼1.1 (see the
Supporting Information for detailed calculation of the
correction factors, section B; eqs S24, S25, and S26; and
section E). After the correction, RET terms in eqs 1 and 2
become equal so that the extra change of the decay
rate on silicon could be attributed to the term γFRET,
which is the nonradiative energy transfer of the ex-
citons in theQDs to silicon via near-field dipole�dipole
coupling.
To develop a deeper understanding of the FRET

between the QDs and silicon, we propose a physical
model for the energy transfer across the studied hybrid

Figure 3. Temperature dependence of the fluorescence
lifetime of the QDs integrated on top of a (a) 0.0 nm, (b)
1.0 nm, (c) 2.0 nm, and (d) 4.0 nm thick Al2O3 layer on SiO2/
Si. Black squares are amplitude-averaged experiment life-
times. Green diamonds are the lifetimes of the QDs on
sapphire as the reference sample corrected for the refrac-
tive index difference with silicon. Red circles are the calcu-
lated lifetimes of the QDs using the “temperature-
independent” energy transfer model. Blue up-triangles
are the calculated lifetimes of the QDs using the energy
transfer model, which considers the temperature-depen-
dent complex dielectric function of silicon, thus being a
“phonon-assisted” model. Orange down-triangles are the
calculated lifetimes of the QDs using the “phonon-assisted”
energy transfer model with the additional inclusion of the
temperature-dependent QY of the donor QDs; thus, it is
called a “full temperature-dependent” model.

A
RTIC

LE



YELTIK ET AL . VOL. 7 ’ NO. 12 ’ 10492–10501 ’ 2013

www.acsnano.org

10496

QD�Si nanostructure. Figure 4 illustrates the dipole�
dipole Coulomb interaction between the donor QD
and the acceptor silicon. An absorbed photon in a QD
photogenerates a bound electron�hole pair (exciton),
which rapidly relaxes to the first excited state through
higher order processes. These excitons can subse-
quently either recombine through a radiative or non-
radiative means inside the QD or be transferred to
silicon via Coulomb interaction between dipoles in the
donor�acceptor pair provided that the separation
distance between the donor and the acceptor is on
the order of a few nanometers. Although this type of
energy transfer has been well known and studied as
Förster resonance energy transfer, it has not been fully
understood when an indirect band-gap acceptor is
involved. Previously, Stavola et al. discussed the effects
of donor�acceptor distance to FRET, while having an
indirect band-gap acceptor.12 There, they have defined
proximity effects, which were calculated to be domi-
nant for the donor�acceptor separations on the order
of a few lattice constants of the acceptor crystal. Here,
the smallest donor�acceptor separation is 5.9 nm
(distance from the center of the closest QD layer to
the surface of silicon for the case of no alumina
separation), which is much larger than the silicon's
lattice constant (∼0.54 nm). Therefore, the transitional
interactions can be assumed to occur mainly in the
optical near-field region around k ≈ 0.13,21 To date,
such phonon-mediated FRET dynamics have not been
studied in terms of physical models for this kind of
unique donor�acceptor material systems.
To estimate the exciton transfer from the QD to bulk

silicon, the well-known Fermi's golden rule is used.
After using the fluctuation dissipation theorem22 and
algebraic manipulation (see the Supporting Informa-
tion for derivations), the resulting FRET rate can be
derived in a form convenient for numeric calcula-
tions.23,24 To understand the origins of the tempera-
ture dependence in transfer, we will examine three
forms of the equation for the FRET rate:

γNRET, Palik(d,ωexc) ¼ F(d) 3 Im[εSi, Palik(ωexc)] (3a)

γNRET, T-dependence(d,ωexc, T) ¼ F(d, T) 3 Im[εSi(ωexc, T)]

(3b)

γNRET, full(d,ωexc, T) ¼ YQD(T)γD0 (T )
YQD(TRoom)γD0 (TRoom)

 !
F(d, T) 3 Im[εSi(ωexc, T)]

(3c)

F(d, T) ¼ 2
p

1
12

� �
edexc
εeff

� �2 1
d3

����� 2ε0
εSi(T)þ ε0

�����
2

(3d)

where edexc and ωexc are the exciton dipole moment
and angular frequency, respectively; d is the QD�
silicon separation distance, εeff = (2ε0 þ εQD)/3 is the
effective dielectric constant, εQD is the QD dielectric

constant, ε0 is the medium dielectric constant, and
εSi(ω,T) is the silicon dielectric function.25 In eq 3, we
assumed Re[εSi(ω,T)] = εSi. Im[εSi(ω,T)], which is a very
good approximation for the considered exciton energy
(λexc ≈ 580 nm, pωexc ≈ 2.1 eV). The function F(d) in
eq 3 involves the optical dipole moment of QD, which
is taken as dexc = 0.4 nm. It is estimated from the QD
exciton lifetime of the reference sample. This exciton
dipole moment was estimated from the exciton life-
time and the QY of QDs in the reference sample. Here,
we assume that the QDs on the quasi-monolayer have
the same exciton transfer contribution to bulk silicon,
such that the average exciton transfer can bedescribed
by the energy transfer of a single QD in a given
monolayer to bulk silicon. In this derived analytical
model, it is worth noting that the distance dependence
of the FRET rate is proportional to d�3, which is because
the acceptor is bulk. This distance dependence is quite
different from FRET in the dye�dye11 and QD�QD26,27

systems, where a FRET rate for a donor�acceptor pair
is ∼d�6. Here one fixed set of material parameters
is employed for all samples, and no fetch factor
is employed (see Supporting Information for the
parameters).
Including the FRET process, the lifetimes of the QDs

on theAl2O3/SiO2/Si substrates can be calculated in the
following way:

γ(d,ω) ¼ Æγ�0, ref (d,ω)æþ
1
N ∑

N

i¼ 1
γi,NRET(di,ω) (4)

Figure 4. (a) Energy diagram illustrating the exciton trans-
fer from the donor QD to the acceptor silicon due to the
Coulomb interaction between the donor�acceptor pair.
The phonon-assisted process is shown as the lateral arrows
tomakeup for themomentummismatch in silicon. (b) Some
of the Feynman diagrams for the phonon-assisted pro-
cesses important for transfer of energy from a QD to an
indirect-band semiconductor. These diagrams include pho-
non-emission processes in the conduction band.
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Here, γ(d,ω) is the decay rate of the QDs on the Al2O3/
SiO2/Si layer, Æγ0,ref* (d,ω)æ is the decay rate of QDs
corrected for the refractive index difference as ob-
tained from the reference sample (see eq S26 in the
Supporting Information for more details), N is the total
number ofmonolayers, and γi,NRET(di,ω) is the FRET rate
for each corresponding layer. The contribution coming
from each different QD layer was taken into account by
considering the respective separation of the given
monolayer to the bulk silicon. Practically, it is assumed
that after the fifth QD layer there is no considerable
FRET into silicon; thus the entire FRET is caused by the
first five QD layers, and it is averaged over the total
decay of the 10 QD layers (see eq 4). Interdot FRET is
ruled out here, since the same QD film (10 monolayer-
equivalent QDs) on sapphire is utilized as the reference
sample.
Now, we briefly show the derivation for the micro-

scopic mechanisms of phonon-assisted FRET, which
are hidden in the key function Im[εSi(ωexc,T)] in eq 3.
Below we will see that the theory based on the experi-
mental dielectric constants taken from refs 25 and 28
provides us with an overall good description of the
temperature and distance trends for the FRET rates.
The imaginary part of the dielectric constant and the
related absorption in silicon at the peak QD emission
wavelength are due to the phonon-assisted processes29

shown in Figure 4. To illustrate the process of phonon-
assisted FRET to an indirect semiconductor, we now
consider transfer of a QD exciton energy to a small
volume, ΔV, at the position R0 within the Si half-space.
An exciton in a QD can be viewed as an oscillating
dipole creating a time-varying electric field Eexc. The
rate of energy dissipation due to the field of an
oscillating dipole in the volume ΔV is

ΔQ ¼ ΔVjEexcj2ωexc

2π
Im[εSi(ωexc, T)] (5)

The absorption rate can also be calculated by the
Feynman diagrams (two of them are shown in
Figure 4b) in combination with Fermi's golden rule:

ΔQ ¼ ΔQþ þΔQ�

ΔQ( ¼ pωexc
2π
p ∑

f ¼fp, p0g

�����∑i
Æf jV̂e � phononjiæÆijV̂exc

j0æ
E0 þ pωexc � Ei

�����
2

0
@

�δ(pωexc þ εp, v � εp0, c0 ( pΩqph )
� ð6Þ

In this equation, V̂exc is the amplitude of the time-
oscillating potential of the exciton and V̂e�phonon is the
electron�phonon interaction in Si. E0 and Ei are the
energies of the initial and intermediate states, respec-
tively, whereas εp,v(c) denotes the energies of single
electrons in the valence and conduction bands. The
indices p and p0 describe the momenta of single
electrons in the initial and final states. The functions
ΔQ� and ΔQþ give the absorption processes with
emission and absorption of phonons, respectively.

Correspondingly, the final states in eq 6 can be of
two types:

jp0, c; nqph � 1æ and jp0, c; nqph þ 1æ (7)

These final states appear as a result of phonon-absorption
and phonon-emission interband processes (Figure 4b).
Here, the state |nqphæ denotes an initial phonon state
with an occupation number nqph, where qph is a phonon
momentum. Equation 6 has very characteristic tem-
perature- and exciton energy-dependencies. The
phonon-emission term in V̂e�phonon will produce the
standard factor (nqph þ 1)1/2 inside the sum, and after
taking the square it will become nqph þ 1. In the
same way, the phonon-annihilation term in V̂e�phonon

will give the factor nqph. The occupation numbers are, of
course, given, by the Bose�Einstein function,

nqph ¼ nB(ωph) ¼ 1

epωph=kBT � 1
(8)

The effective density of states for the indirect interband
phonon-assisted transitions is well known and, near
the band gap, has the form (pω � Egap)

2, where Egap is
an indirect band gap of a semiconductor.29 These
considerations allow us to write the dissipation and
the imaginary part of the dielectric constant in the
following way adopted from ref 28:

Im[εSi(ωexc, T)] ¼ n0Sic0
ωexc

R(ωexc, T )¼ n0Sic0
ωexc

 !

� ∑
i ¼ 1, 2(phonons)
j ¼ 1, 2(band-gaps in Si)

AjCi nB(Ωph, i , T)

�[pω � Eg, j(T )þpΩph, i]2 þAjCi � [nB(Ωph, i , T )þ 1]

�[pω � Eg, j(T) � pΩph, i]
2 (9)

where the empirical coefficients obtained from
experiments28 are given in the Supporting Information
in Section E. Equation 9 involves two types of optical
phonons and two indirect band gaps typical for the
silicon crystal and provides a rather realistic approx-
imation for silicon. Importantly, two sources of tem-
perature dependence can be identified from eq 9: the
phonon populations (nB(Ωph,i,T)) and the temperature-
dependent band gaps. Both sources are important for
Si. The above consideration has shown themicroscopic
origin of the FRET process in the hybrid QD�Si system,
in which phonon-assisted processes are crucial for
energy transfer. This is in striking contrast to the
systems with direct band-gap crystals, such as CdSe
or CdTe systems,30 for example.
Here, using eqs 3, 4, and 9 the experimental data are

contrasted at various temperatures with three different
theoretical approaches: “temperature-independent”,
“phonon-assisted”, and “full temperature-dependent”.

1. Palik's Dielectric Function at T = Troom: Model 1, Tempera-
ture Independent. Using the temperature-independent
function γNRET,Palik(ωexc) and eq 3a, we obtain the rates
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that have clearly a weaker T-dependence compared to
the experimental data (Figure 3). The temperature
dependence in this case comes from the intrinsic QD
lifetime τ0(T).

2. Temperature-Dependent Dielectric Function from Ref 28:
Model 2, Phonon-Assisted FRET. To improve our model and
include temperature dependence into the FRET rate,
we now include the temperature-dependent pro-
cesses in Si and use eq 3b with the dielectric function
from ref 28. For different temperatures, a temperature-
independent refractive index is taken as 4 at the
wavelengths of interest according to Bucher et al.28

Results are given again in Figure 3. The insertion of the
phonon-assisted absorption of silicon improved the
theoretical prediction considerably, as shown in
Figure 3 by blue up-triangles. The low-temperature
agreement is much better compared to the bare
energy transfer model, which does not involve any
temperature-dependent process. This means that pho-
non-assisted properties of silicon as the acceptor in our
energy-harvesting system directly affect the energy
transfer rates. Generally, it is not common in the
context of FRET being a phonon-assisted process, since
most of the time the excitation energy is resonantly
transferred to the state in the acceptor without absorp-
tion or emission of any phonons. However, it is well
accepted that the radiative transitions in indirect band-
gap materials involve phonons for the transitions to
take place. In the energy transfer process from QDs to
bulk silicon, similar to optical transitions, this suggests
that phonons are required to assist the energy transfer.
As a result, this type of energy transfer cannot be called
merely Förster-type, since its resonance condition
can be relaxed due to involvement of the phonons.
Furthermore, the effects of different types of phonons
on this energy transfer are different. Especially, acous-
tic phonons are considered responsible for the optical
transitions at low temperatures due to their lower
activation energies. At cryogenic temperatures, how-
ever, there are fewer optical phonons as compared to
the acoustic ones, since the optical phonons have
much higher activation energy. In addition, consider-
ing the optical absorption for silicon, which includes
phonon absorption and emission effects in addition to
direct transitions with no phonon assistance, the pho-
non emission is observed to be a more dominating
process at low temperatures.

3. Temperature-Dependent QY of the Donor QDs: “Model 3,
Full Temperature-Dependent Approach. Despite the reason-
able agreement between the results of the phonon-
included model and the experimental data, there
remains some discrepancy especially at the cryogenic
temperatures below 100 K. We attribute it to the QD's
temperature-dependent optical properties, i.e., QY. We
measured and calculated the relative change of the
temperature-dependent QY for the QDs and observed
that, as the sample temperature is gradually decreased,

the QY increases until 150 K, peaking at this tempera-
ture, and then decreases toward lower temperatures
(Figure S2).31 Our energy transfer model intrinsically
includes the theoretical radiative decay rate of the
donor QDs at room temperature. By further including
the QY changes as a function of temperature in the
model, we therefore modify the radiative decay rate of
the QDs as a function of temperature in accordance
with the experimentally measured total decay rates
and the QYs. Using these temperature-dependent QYs
and the ratio between the transfer rates of the QDs on
the reference sample, we obtain the final modified
model, which includes both temperature-dependent
effects of the QDs and silicon as given in eq 3c. The
final model results in an improved match between
the theory and experiment especially at the lowest
temperature cases, as shown in Figure 3. The “full
temperature-dependent approach” reproduces qua-
litatively all experimentally observed trends for the
FRET rate as a function of separation distance
and temperature with a slight improvement over
the “phonon-assisted” model, compared to the
improvement of the “phonon-assisted” model intro-
duced over the “temperature-independent” analyti-
cal one. All in all, the energy transfer model includ-
ing the phonon-assisted processes in the absorption
of silicon with the help of temperature-dependent
optical properties in the QDs proved its effectiveness
to assess temperature-dependent fluorescence
lifetimes of the donor QDs better and showed
reasonable agreement with the experimental
measurements.

Experimental FRET rates are summarized in Figure 5.
These rates were calculated as

γNRET, tot(T)¼ γQD, Si � γQD, 0 (10)

where γQD,Si is the decay rate for QDs on Si and γQD,0 is
the intrinsic decay rate of the excitons corrected due to
the modified radiation probability on silicon. Theoreti-
cally, the FRET rates are obtained from

Figure 5. Experimental FRET rates as a function of tempera-
ture. Orange squares correspond to the FRETwithout Al2O3.
Red circles correspond to the FRET for a 1.0 nm Al2O3

thickness. Blue up-triangles correspond to the FRET for a
2.0 nm Al2O3 thickness. Green down-triangles correspond
to the FRET for a 4.0 nm Al2O3 thickness. The FRET rates in
this graph were obtained taking the modified reference
rates into account.
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γNRET, tot(T) ¼
1
N ∑

N

i¼ 1
γi,NRET(di,ω) ¼ fd(XAl2O3 ) FT (T,ωexc)

(11)

We can see from the above equation that the FRET rate
can be conveniently expressed as a product of two
functions, fd(XAl2O3

) and FT(T,ωexc), where XAl2O3
is the

thickness of the separation layer. Figure 5 shows the
initial experimental rates, whereas Figure 6 displays the
comparison between the experimental and theoretical
data. In Figure 5,we see clearly the trend; the FRET rates
are much higher for small Al2O3 separations. This is
expected, since the Coulomb-induced energy transfer
process rapidly decays with increasing distance. Im-
portant results on the temperature dependence of
FRET are shown in Figure 6. We see overall good
agreement between the “full temperature-dependent”
model and the experiment. After including both the
temperature-dependent dielectric function of accep-
tor silicon and QY of the donor QDs, the theoretical
model reasonably reproduces the experimental data.
We note that the effect of the temperature-dependent
dielectric function of silicon comes from two physical
factors: the thermal phonon population and the tem-
perature variation of the band gap.

As an additional study, we examined the phonon
assistance to NRET from QDs into silicon with increas-
ing temperature, by performing TRF measurements at
temperatures higher than room temperature. To this
end, we prepared and employed a new sample with-
out using an alumina spacer. For the experimental
characterization, we worked in the range of the

elevated temperatures possible in our time-resolved
setup. Herewe observed that the NRET process becomes
more efficient going from 290 to 370 K as presented as a
function of temperature in Figure 7. The observed in-
crease in this temperature range is attributed to enhance-
ment of the phonon-assisted interband transitions in
silicon owing to occupation of the phonon modes in
silicon even if the PL QY of the QDs is expected to be
comparatively reduced due to the thermal droop. There-
fore, the net observed result is that the phonon-assisted
enhancement in interband transitions in silicon is strong
enough and enhancesNRETwith increasing temperature
in spite of various adverse effects there might be in the
studied temperature range. This finding indicates the
technological importanceof thephononassistance in the
optical sensitization in silicon devices and may open up
new possibilities for enhanced silicon photonics includ-
ing photovoltaics and photodetectors.

CONCLUSIONS

In summary, we presented and analyzed the tem-
perature-dependent fluorescence lifetimes and energy
transfer efficiencies in hybrid QD�silicon nanostruc-
tures to reveal dynamics of the FRET based on the
phonon assistance for the absorption process. To study
systematically the underlying physics of FRET, we
utilized the QD�silicon nanostructure platforms with
varying separation thicknesses between the donor
QDs and the acceptor silicon. Our experimental data
showed that FRET from the QDs into silicon substrates
becomes weaker at low temperatures, which is attrib-
uted to the phonon-involved interband transitions in
silicon. To explain these experimental measurements,
we first developed a temperature-independent analy-
tical model using dipole�dipole interaction, leading
to � d�3 distance dependence and then suggested a
modified physical model introducing temperature
effects based on phonon-assisted absorption into this
analytical model as a semiemprical approach. The
model proves to be successful in analyzing and explain-
ing temperature dependence, leading to reasonably
well matching results with the experimental data.
In addition, the full temperature-dependent model,
which also takes temperature-dependent QY changes

Figure 6. Energy transfer rates as a function of temperature
for each case: Al2O3 thickness of 0.0, 1.0, 2.0, and 4.0 nm.
Black squares correspond to the experimental data. Red
circles represent the FRET without phonon assistance, blue
up-triangles include phonon assistance, and orange down-
triangles consider both the phonon assistance and tem-
perature-dependent QY change of the QDs.

Figure 7. FRET efficiency as a function of temperature in the
range 290�370 K.
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of the donor QDs into account, is presented to improve
the match between the theory and the experiments.
Therefore, these findings indicate the assistance of

phonons in FRET for the case of indirect band-gap
acceptors such as silicon as the phonon assists for the
case of optical absorption.

METHODS
The average radius of the QDs was obtained by an FEI Tecnai

G2 F30 ensemble HR-TEM. Film thicknesses of the native oxide
and the QD layer on silicon substrates were recorded by a
V-VASE ellipsometer. We deposited Al2O3 thin films on SiO2/Si
substrates using Al2(CH3)6 and H2O precursor gases at 200 �C
with a Savannah 100 ALD system. The QDs were spin-coated
over our Al2O3/SiO2/Si structures at 2000 rpm for 150 s. To
confirm the uniformity of surface coverage for the QDs, the
image of the QDs coated on the samples was taken by a Quanta
200 FEG Environmental SEM with high magnification. To assess
the FRET dynamics in the QD�Si hybrid structures, fluorescence
decays of the QDs were recorded by TRF spectroscopy with a
closed cycle He cryostat.
For the temperature-dependent QY measurements of the

QDs, we recorded PL intensities for each temperature using TRF
spectroscopy with a closed cycle He cryostat. We measured the
counts at the wavelength range of 520�610 nm with 10 nm
steps and summed themup to obtain the total photon counts at
each temperature. We set the accumulation time at each
wavelength as 20 s since this gives approximately the real time
of the TRF lifetimemeasurements we presented in the study. As
given in Figure S2 (Supporting Information), as the temperature
decreases, the QY increases gradually, making a peak at around
177 K, corresponding to the toluene freezing temperature, and
then decreases slowly at lower temperatures. The solvent phase
transition of the colloidal QDs at low temperatures may affect
the temperature dependence behavior of the QDs' PL
intensity.30 In addition, photo-oxidation and photobleaching
may occur as a result of the long duration of illumination in the
TRF measurements.32,33
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