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ABSTRACT: We propose and demonstrate light-sensitive
nanocrystal skins that exhibit broadband sensitivity enhance-
ment based on electron transfer to a thin TiO2 film grown by
atomic layer deposition. In these photosensors, which operate
with no external bias, photogenerated electrons remain
trapped inside the nanocrystals. These electrons generally
recombine with the photogenerated holes that accumulate at
the top interfacing contact, which leads to lower photovoltage
buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer,
which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-
sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals
enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron
acceptor, we observed broadband sensitivity improvement across 350−475 nm, with an approximately 22% enhancement.
Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2
layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as
smart transparent windows, light-sensitive walls, and large-area optical detection systems.
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Semiconductor nanocrystals (NCs)1−3 are currently used to
create novel optoelectronic devices for the photovoltaic,4−6

light-emission,7−9 light-detection,10,11 and biosensing12,13 ap-
plications. Solution-processable NCs, which have been
developed for over the past two decades,14 have been heavily
exploited in optoelectronic applications, and emerging usage
fields of these intriguing materials are still developed for novel
devices.15 From the material perspective, NCs offer a number
of useful attributes: (1) they are low cost; (2) they are solution
processable; (3) they have spectral tunability due to the
quantum size effect, and (4) they can easily be deposited on a
variety of substrates.
NC-based photodetectors convert an optical signal to an

electrical signal using the NCs as the optical absorbers.16,17

They are easy to fabricate at low cost, which makes them good
candidates for large-area light-sensing applications. These
devices were initially constructed on the basis of charge
collection, where an electric field imposed on the photodetector
dissociates the photogenerated excitons into electrons and
holes, and an electric current is produced.18 Recently, another
device structure called the light-sensitive nanocrystal skin (LS-
NS) has been developed.19 Unlike the charge collection
mechanism, they are operated on the principle of photo-
generated potential buildup. Their ability to provide reliable

data that has high sensitivity at the required wavelength, high
conversion efficiency of photons to an electrical signal, low
noise that results in a high signal-to-noise ratio, along with the
possibility to make them over large areas offers a promising
approach for the light-sensing applications.
LS-NSs consist of a monolayer of NCs over the

polyelectrolyte polymers on top of a thin stack of high-
dielectric spacing layers made of hafnium dioxide (HfO2).
These devices operate on the basis of photogenerated potential
buildup with the aid of HfO2 as the charge isolation layer on
top of the indium tin oxide (ITO) contact, and the interaction
between the NCs and the top interfacing contact. Despite the
single NC layer in LS-NSs, they are highly sensitive devices
creating very low charge accumulation to achieve a large
enough photovoltage buildup. Furthermore, a monolayer of
NCs is advantageous to be used in LS-NSs owing to the
properties of semitransperency, low material consumption, and
low noise generation.
In LS-NSs, after the excitons are photogenerated, they are

dissociated at the interface between the aluminum (Al) and the
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NC monolayer. Owing to the Al workfunction and band
alignment of the NC monolayer, the holes migrate to the Al
side, whereas the electrons remain inside the NCs due to the
presence of the HfO2 layer. In these devices, the more electrons
and holes that are photogenerated, the more voltage buildup
that can be obtained. These electrons and holes tend to
recombine inside the NCs; therefore, the competition between
exciton dissociation and recombination affects the performance
in a negative way. Consequently, we posit that, by transferring
electrons from the NCs to an electron acceptor layer, and thus
further separating the holes and electrons to decrease the
recombination probability, a favorable enhancement in the
device performance can be obtained. The higher conduction
band level of NCs can serve as the driving force for electron
injection from the NCs to a nearby acceptor with a lower
conduction band level. To this end, we propose that a favorable
conduction band offset in LS-NS devices may aid in transferring
electrons from the NCs to an electron-accepting material such
as TiO2. Hence, the majority of holes migrate toward the top Al
contact. A schematic band diagram of the TiO2 and Al, which
serve as the acceptors for the electrons and the holes,
respectively, is shown in Figure 1a.20 The device architecture

for the light-sensitive skins with the electron-accepting layer
(TiO2) is also depicted in Figure 1b.
We fabricated light-sensitive skins both with the TiO2 layer

(w TiO2) and without the TiO2 layer (wo TiO2) to be used as a
reference sample. In the quest to find a proper electron-
accepting material, Jin et al. reported the process of charge
transfer from NCs to a TiO2 layer grown by atomic layer
deposition (ALD).21 This process uses pulses of water that
preferentially coat hydrophilic surfaces and improve the quality
of self-assembled films.22 An absorption spectrum of the 10 nm
thick TiO2 film via ALD is given in the spectral range of 350−
600 nm (see Figure S1, Supporting Information).
We also synthesized aqueous CdTe NCs of different sizes

according to the study reported by Rogach et al.23 Different LS-
NS devices were fabricated based on these NCs with the
average diameters of 2.9 and 3.7 nm, which is found from their
extinction spectra24 (Figure S2, Supporting Information). To
enhance electron transport and charge conductivity, we partially
removed the thioglycolic acid (TGA) ligands from the NC
surfaces by adding isopropanol into the CdTe NC solution and
centrifuging the mixture. We note that another means of
decreasing the recombination probability of photogenerated

Figure 1. (a) Energy band diagram of CdTe NC (3.7 nm in size) conduction band (CB), valence band (VB), and the workfunction (Φ) of ITO,
TiO2, and Al are shown in the energy diagram. After the excitons are photogenerated (1), electrons are transferred to the TiO2 layer (2), while holes
migrate to the Al side (3). (b) Schematic of the LS-NS device incorporating a TiO2 layer.

Figure 2. Variations of the photovoltage buildup based on four bilayers of PDDA−PSS at different excitation wavelengths (a) without TiO2 and (b)
with TiO2. Photovoltage buildup variation based on one bilayer of PDDA−PSS (c) without TiO2 and (d) with TiO2.
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electrons and holes in these devices relies on surface passivation
of the NCs.1 Indeed, charges encounter high potential barriers
due to the ligands passivating the NCs’ surface. During the film
assembly, the NC solution was rigorously stirred to prevent
precipitation. Ligand removal of CdTe NCs and monolayer
assembly procedures are all explained in our previous work in
detail.25

For the device implementation, after cleaning the indium tin
oxide (ITO) film deposited on a glass substrate, a 50 nm thick
HfO2 dielectric film, followed by a 10 nm TiO2 layer, was
deposited using ALD at 150 °C. Subsequently, we used layer-
by-layer assembly26 via a computerized dip-coating system to
deposit the NCs. Negatively charged CdTe NCs were coated
on top of bilayers of polydiallyldimethylammonium chloride−
polysodium 4-styrenesulfonate (PDDA−PSS) serving as a
strong polyelectrolyte polymer layer. Finally, a very thin
semitransparent Al contact was deposited on top of the NC
layer using a thermal evaporator (Figure 1b).

■ RESULTS AND DISCUSSION
For a detailed understanding of the effects of TiO2 layer
incorporation into the light-sensitive skins in terms of the
device operation and performance, we systematically changed
the excitation wavelength and the illumination intensity. The
photovoltage buildup vs time characteristics for the devices
(wo/w TiO2) with four bilayers of PDDA−PSS obtained under
a monochromatic light source is shown in Figure 2a,b. We
observed more voltage buildup as the excitation wavelength is
shortened, followed by a larger negative voltage value after the
light was switched off. This result is due to the stronger optical
absorption of CdTe NCs at shorter optical wavelengths. At
higher photon energies, due to the more available electron and
hole states, NCs can absorb a larger number of photons and
photogenerate more electron−hole pairs. On the other hand,
the lower voltage buildup observed in the low photon energy
region is owing to the low optical absorption of the NCs, which
is a limiting factor for the device performance.27 The devices
wo/w TiO2 based on the four bilayers of PDDA−PSS showed
similar voltage buildup variations in response to the excitation
with different intensities at different wavelengths. We did not
observe any considerable improvement in the output of the
device w TiO2 as compared to that of the device wo TiO2. This
implies that the TiO2 layer did not significantly affect the
charge-transfer mechanism when the four-bilayer PDDA−PSS
is used in the device. In these structures, electrons were,
therefore, not able to migrate sufficiently to the TiO2 layer.
As depicted in Figure 1a, the conduction band edge of a

CdTe NC lies above that of TiO2 film, which favors the strong
electron injection into the TiO2 layer. To understand the
underlying mechanism responsible for hindering the electron
transfer to the TiO2, we suggest that it might be the
polyelectrolyte polymer thickness in our device structure.
Therefore, we attribute the unvaried voltage buildup for the
sample with the TiO2 layer to the thickness of the
polyelectrolyte polymer layer. When the polymer layer is
thick enough to prevent the electron transfer to the TiO2 layer,
electrons are trapped inside the NCs and may recombine with
the photogenerated holes at the interface between the NC and
the Al layer. As a result, a similar amount of voltage buildup as
in the case of the reference can be observed. Furthermore,
when we used the generic definition of sensitivity as the ratio of
voltage buildup to the incident optical power, again, no
considerable change was observed, as seen from Figure 3a.

If the dielectric polyelectrolyte layer is thin enough, the
electrons will not be trapped inside the NCs and they will be
transferred to the TiO2. Consequently, the recombination
probability of photogenerated excitons inside the NCs may
decrease, which results in a larger photovoltage buildup. To this
end, we decreased the number of polymer layers from four to
one, to eliminate the possible change in the surface of the NCs
as the number of polyelectrolyte layers changes,28−30 and we
fabricated an individual control sample for each set of samples.
As shown in Figure 2c,d, the enhancement in electron injection
into the TiO2 layer was confirmed by the great increase in
photovoltage buildup. In the presence of a thin polyelectrolyte
polymer between the NCs and the TiO2, electron transfer to
the TiO2 film takes place easily, which, in turn, decreases the
recombination probability of the photogenerated electrons and
holes in the NCs. This leads to a larger voltage buildup, which,
consequently, enhances the device sensitivity. As can be
understood from Figure 3b, we obtained a sensitivity
enhancement over the broad spectral range of 350−475 nm
with an increase of up to 22% when compared to the reference
sample.
Furthermore, the sensitivity enhancement at the long

wavelength region is less than that at the short wavelength
region. In our previous work, we reported that the sensitivity of
a NC skin increases with the plasmonic enhancement of the
NC absorption by using plasmonic nanocrystals. The sensitivity
improvement in plasmonically coupled light-sensitive skins of
NC monolayers strongly depends on the localized plasmonic
resonance band. That is why we posit that the enhancement is
most likely only because of the charge-transfer mechanism and
there is no absorption enhancement of the CdTe NC
monolayer.31 The slight enhancement in the performance of
the both devices w/wo TiO2 film at longer wavelengths can be
attributed to the lower photon energies. These low-energy
electrons and holes are less likely to cross the potential barrier
of NCs and more likely to be captured at the surface states.
This was also confirmed with the in-film photoluminescence
excitation (PLE) and absorption data of the monolayer CdTe
NCs (Figure S3, Supporting Information). To further verify the

Figure 3. Sensitivity comparison of the LS-NS devices in the absence
and presence of a TiO2 layer for the structures, based on (a) four
bilayers of PDDA−PSS and (b) one bilayer of PDDA−PSS.
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excitation wavelength dependence of the device sensitivity, we
conducted the voltage buildup measurements at different
excitation wavelengths and intensity levels by using another
LS-NS device with different-sized CdTe NCs. To this end, we
used CdTe NCs with the diameter of 2.9 nm, having the first
excitonic peak at around 530 nm, and fabricated LS-NS based
on one bilayer of PDDA−PSS in the absence and presence of
the TiO2 layer (Figure S4, Supporting Information). Lower
voltage buildup and correspondingly reduced sensitivity in the
device performance can be explained by the lower optical
absorption of the smaller NCs (2.9 nm in diameter). This is an
expected result since the smaller (larger) NCs have a smaller
(larger) number of states available due to the quantum
confinement effects and the resultant lower (higher) optical
absorption, which results in a lower (higher) voltage buildup.
Moreover, small-sized NCs have generally a larger number of
trap states than large-sized NCs, which limits the photo-
generated exciton population. Consequently, as compared to
the devices with the small NCs, better device performance was
observed for the range of 350−475 nm by using the larger NCs,
which has the first excitonic peak at around 605 nm and the
photoluminescence emission peak at around 627 nm (Figure
S5, Supporting Information). As an evidence for the effect of
introducing the TiO2 layer, there is a clear difference between
the sensitivity enhancement levels at short and long wavelength
ranges. In both devices w/wo TiO2, photogenerated electrons
and holes remain inside the NCs due to the lower photon
energies at longer wavelengths. As a result, a lower voltage
buildup and slight sensitivity enhancement can be observed in
the long wavelength range.
To further support the existence of a charge transfer from the

NCs to the TiO2 film, we conducted time-correlated single-
photon counting experiments (Picoquant, Fluotime 200) for a
hybrid structure composed of the NC monolayer on top of the
polymer layer and coated on 10 nm TiO2, which is deposited
on glass substrates and on the same structure, but without
TiO2. We prepared the samples by using a self-assembly
technique via dip-coating and subjected the structures (wo/w
TiO2) to time-resolved fluorescence (TRF) spectroscopy at
room temperature. The TRF system has a pulsed laser diode
with an excitation wavelength of 375 nm and a calibrated time
resolution of 32 ps. Time-resolved fluorescence detection was
performed at the NC film’s peak emission wavelength, which is
640 nm (Figure S6, Supporting Information). Figure 4 depicts
the TRF decay curves for all the samples (wo/w TiO2), and all
the decay curves were analyzed by 1/e fitting. As evident from
Figure 4, there is a clear difference between the TRF decays of
the bilayered PDDA−PSS-based structures wo/w the TiO2
layer. According to the measurement, the effective lifetime
decreases considerably, from 0.796 ns in the sample with no
TiO2 to 0.467 ns in the sample with TiO2. This reduction in
lifetime supports the presence of a possible electron-transfer
channel from the donor NCs into the acceptor TiO2. Here, it is
worth noting that, due to the lack of overlap between the TiO2
absorption and the NC emission, we ruled out an energy
transfer from the NCs to the TiO2.

32,33

Similarly, to verify the device demonstration in which the
thick polyelectrolyte layers (the four bilayers of PDDA−PSS)
limit the electron transfer from the NCs to the TiO2 layer, we
took the TRF measurements of the structures with a monolayer
of CdTe NCs using four bilayers of PDDA−PSS wo/w the
TiO2 layer. The lifetimes of the structures based on four
bilayers of PDDA−PSS in the samples wo/w TiO2 were found

to be similar to each other, which are 1.850 and 1.630 ns for the
samples wo/w TiO2, respectively. The thick polyelectrolyte
polymer layer must, therefore, hinder the migration of electrons
to the TiO2 film, which explains the aforementioned
observation of no considerable performance improvement in
the device operation.
To further analyze the lifetimes, we predicted the electron-

transfer rate of the presented structures using the expression γe
= γhybrid − γref,

34,35 where γhybrid is the rate for the monolayer
NCs on top of the bilayers of polyelectrolyte polymers with the
presence of TiO2, and γref is the NCs’ excited-state relaxation
rate obtained from the structure with no TiO2. By subtracting
the rate of the hybrid structure from that of the reference for
the one-bilayer-based PDDA−PSS, assuming that the difference
can be attributed to the electron-transfer rate, we calculated a
transfer rate of γe = 0.89 ns−1. However, this rate is almost zero
for the four-bilayer case. We also calculated the electron-
transfer efficiency using the relation η = γe/(γe + γref) and found
the resulting efficiency for the one-bilayer case to be 41.3%
which is a quite high value as compared to 11.9% obtained for
the four-bilayer case. This significant efficiency explains the
migration of a considerable amount of photogenerated
electrons from the CdTe NCs to the TiO2 layer. These
observations are in strong agreement with the observed
photovoltage buildup and sensitivity spectrum of the LS-NS
with the TiO2.

■ CONCLUSION
In this paper, we demonstrated the transportation of photo-
generated electrons to a TiO2 layer in LS-NS devices leading to
great enhancement in the device sensitivity. We observed that,
depending on the thickness of the associated polyelectrolyte
polymer layer, the sensitivity of the photosensors with the TiO2
layer can be enhanced or remain unaffected. We verified that
thick polyelectrolyte polymer layers serve as an unfavorable
injection barrier for transferring photogenerated electrons to
the TiO2 layer. Subsequently, we designed our optimum

Figure 4. Time-resolved fluorescence decays of the NCs in the
absence and presence of the TiO2 layer based on different bilayers of
polyelectrolyte polymers. The black arrow indicates the decrease in the
lifetime of the NC samples based on one bilayer of polyelectrolyte
polymers from the structure without the TiO2 to the one with the
TiO2 layer. The electron-transfer rate of the one-bilayer case was
found to be 0.89 ns−1, whereas it is almost zero for the four-bilayer
structure.
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structure based on one bilayer of PDDA−PSS to improve the
charge separation at the CdTe/TiO2 interface, i.e., with the
least amount of electrons being scarified. The measured
photovoltage buildup spectra clearly reveal the influence of
the TiO2 layer and charge transportation in the LS-NS devices.
As further experimental evidence, we studied the influence of
the TiO2 layer and tracked changes in the TRF decay of the
structures with a monolayer of CdTe NCs based on different
polyelectrolyte polymer thicknesses. Subsequently, we attribute
the shortening of lifetimes to the presence of charge transfer
from the NC monolayer to the TiO2 layer, which is
energetically favorable. We believe that these results open the
potential for the development of high-performance semi-
transparent thin-film-based, large-area, and UV/visible sensing
platforms.

■ METHODS
Synthesis of CdTe NCs. First, we dissolved 4.59 g of Cd(ClO4)2·

6H2O in 500 mL of Milli-Q water, and then we added 1.33 g of TGA
and adjusted the pH to 11.8−12.0. Then, we conducted H2Te gas flow
by reacting 0.8 g of Al2Te3 with H2SO4 in the environment of a slow
Ar flow. At 100 °C, the nucleation and growth of the NCs were
initiated.
Device Fabrication.We washed an ITO film (80 nm) coated on a

glass substrate by using ultrasonication in a mixture of 2 mL of
Hellmanex in 100 mL of Milli-Q water for 20 min, followed by the
baths in water, acetone, and isopropanol for 20 min each. We then
continued our fabrication by depositing a 50 nm thick HfO2 film,
followed by a 10 nm thick TiO2 layer using ALD (Savannah).
Subsequently, we used a layer-by-layer self-assembly method with a
computerized dip-coating system to deposit the NCs. Lastly, we laid a
very thin (15 nm) transparent Al contact layer immediately on top of
the CdTe NC monolayer via thermal evaporation.
Device Characterizations. We carried out all optoelectronic

characterizations at room temperature and applied no external bias
across the device. We measured the photovoltage buildup vs time
characteristics using an Agilent Technologies parameter analyzer and a
xenon light source with a monochromator. During the operation of the
devices, each was connected to a 200 MΩ shunt resistor with the ITO
contact grounded. We measured the optical power on the device using
a Newport 1835C multifunction optical power meter. Because of the
slight absorption of the TiO2 layer, all devices were illuminated from
the top (Al) side.
Time-Resolved Fluorescence Measurements. The decay

curves were fitted with 3-exponentials (χ2−1), which led to the best
χ2 values, and the excited-state lifetimes for the samples were
calculated via amplitude-averaging. The decay curves were also
analyzed by 1/e fitting, and it was observed that there is a big
consistency between the lifetimes obtained from both analysis
techniques.

■ ASSOCIATED CONTENT
*S Supporting Information
Absorption spectrum of 10 nm TiO2 grown by atomic layer
deposition on HfO2-coated glass substrate (Figure S1);
absorption spectra of CdTe NCs (in solution) with the
diameter size of (a) 2.9 nm and (b) 3.7 nm (Figure S2);
photoluminescence excitation spectra (normalized) and
absorption spectra (normalized) of the monolayer of CdTe
NCs (in-film) with the diameter of 3.7 nm (Figure S3);
variations of the photovoltage buildup based on 2.9 nm
diameter CdTe NCs size at different excitation wavelengths
without TiO2 and with TiO2 (Figure S4); photoluminescence
and UV−vis-NIR absorption spectra of as-synthesized CdTe
NCs (3.7 nm diameter) in solution at room temperature
(Figure S5); and photoluminescence of a monolayer of CdTe

NCs (3.7 nm diameter) at room temperature (Figure S6). This
material is available free of charge via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: volkan@stanfordalumni.org.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge financial support, in part, by ESF EURYI, EU
FP7 Nanophotonics4Energy NoE and TUBITAK under
Project Nos. EEEAG 110E217, 111E189, and 112E183, and,
in part, by NRF-CRP6-2010-02 and NRF RF 2009-09. H.V.D.
gratefully acknowledges additional support from TUBA.

■ ABBREVIATIONS

NC, Nanocrystal
LS-NS, Light-Sensitive nanocrystal skin
Al, Aluminum
HfO2, Hafnium dioxide
ALD, Atomic layer deposition
ITO, Indium tin oxide
PDDA, Polydiallyldimethylammonium chloride
PSS, Polysodium 4-styrenesulfonate
TGA, Thioglycolic acid
PLE, Photoluminescence excitation
TRF, Time-resolved fluorescence

■ REFERENCES
(1) Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals;
Cambridge University Press: Cambridge, U.K., 1998.
(2) Kudera, S.; Carbone, L.; Manna, L.; Parak, J. W. Semiconductor
Nanocrystal Quantum Dots Synthesis, Assembly, Spectroscopy and
Applications; Rogach, A. L., Ed.; Springer: New York, 2008; pp 1−34.
(3) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller,
H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nano-
crystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−
Trioctylphospine Mixture. Nano Lett. 2001, 1, 207−211.
(4) Nozik, A. J. Nanoscience and Nanostructures for Photovoltaics
and Solar Fuels. Nano Lett. 2010, 10, 2735−2741.
(5) Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.;
Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K.
W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. Colloidal-
Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nat.
Mater. 2011, 10, 765−771.
(6) Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer, P. H.;
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