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ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with
p-(AlGaN/GaN/AlGaN) quantum well structured electron
blocking layer (QWEBL) are designed and grown by a metal−
organic chemical-vapor deposition (MOCVD) system. The
proposed QWEBL LED structure, in which a p-GaN QW layer
is inserted in the p-AlGaN electron blocking layer, not only
leads to an improved hole injection but also reduces the
electron leakage, thus enhancing the radiative recombination
rates across the active region. Consequently, the light output
power was enhanced by 10% for the QWEBL LED at a current density of 35 A/cm2. The efficiency droop of the optimized
device was reduced to 16%. This is much smaller than that of the conventional p-AlGaN electron blocking layer LED, which is
31%.
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For InGaN/GaN light-emitting diodes (LEDs) working as
the light source for artificial lighting, a high operating

current density is necessary to generate sufficient light output
power. However, at high current densities an efficiency droop is
often observed, and many efforts have been made to suppress
the efficiency droop.1 A p-AlGaN electron blocking layer
(EBL), as one of the basic LED structure layers, is typically
applied to fulfill this function. However, it has been found that
although the p-AlGaN EBL is able to reduce the overflow of the
electrons from the active region to the p-GaN layer, it also
retards the hole injection from the p-GaN layer to the active
region.2 Many variants based on the p-AlGaN EBL have been
proposed and realized, which have greatly enhanced the optical
power and reduced the efficiency droop under high current
intensity. These approaches include p-AlGaN EBLwith graded
Al composition,3 AlGaN/GaN superlattice EBL,4 AlInGaN
quaternary EBL,5 and AlInN EBL.6 In practice, the graded Al
composition EBL and the superlattice EBL are not easy to be
realized since they need very precise control of the composition
and the thickness of the EBL layer.7 For quaternary AlInGaN-
and AlInN-type EBLs, due to the large difference of AlN and
InN in bonding strength and thermal property, the growth has
to be conducted at a low temperature with N2 as carrier gas.
Therefore, the growth conditions are difficult to control and the
material quality is often compromised. Moreover, the degraded

quality of the EBL will also lead to the degradation of the
quality of the subsequent p-GaN layer.8 To simplify the growth
process, guarantee a high crystal quality, and maintain the
electron blocking function of the EBL, Xia et al. have
theoretically demonstrated the advantages of the p-type
AlGaN/GaN/AlGaN (AGA) EBL with an inserted p-GaN
layer thicker than 4 nm.9 However, there is no experimental
study performed to prove their concept.
In this work, different from previously studied structures, we

initiate a new type of AGA EBL with a thin p-GaN layer of
thickness less than 4 nm: the thin p-GaN layer serves as a
quantum well (QW), and the AlGaN layers with an Al
composition of 20% were regarded as the barriers. Therefore,
the proposed architecture is a quantum well structured EBL
(QWEBL). The improvements in electron confinement and
hole injection in the LED with the QWEBL are predicted by
theoretical simulations and confirmed experimentally here. The
designed LED structure with the optimized QW thickness of 2
nm not only suppresses the electron overflow of the active
region but also enhances the hole injection. The efficiency
droop in the LED with the proposed QWEBL structure is
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found to be much smaller than that in the LED with the
conventional p-AlGaN EBL.

■ EXPERIMENTAL METHODS
InGaN/GaN LEDs studied in this work were grown by an
Aixtron metal−organic chemical-vapor deposition (MOCVD)
system. Two-inch patterned sapphire substrates with periodic
cone patterns (with a diameter of 2.4 μm, a height of 1.5 μm,
and a pitch of 3 μm) were used. The growth started with a 30
nm thick low-temperature GaN buffer, followed by an
undoped-GaN interlayer (∼150 nm thick); detailed informa-
tion on the interlayer growth can be found in our previous
publication.10 Subsequently, a high-temperature undoped GaN
was grown with a thickness of 5 μm followed by a 3 μm Si-
doped n-GaN layer. Six pairs of InGaN/GaN multiple quantum
wells (MQWs) were grown with the 3 nm quantum well at 750
°C and the 12 nm quantum barriers at 800 °C. The indium
composition of the InGaN well is 15%, and the peak emission
wavelength is 450 nm. The p-EBL was grown on the top of the
last barrier. The structures were finally covered with a 200 nm
thick p-GaN layer. For the reference sample a p-Al0.2Ga0.8N
layer of 28 nm was used as the p-EBL. In the proposed
QWEBL LED samples, the p-EBL was a p-(AlGaN/GaN/
AlGaN) structure with the total thickness kept at 28 nm, and
the thin p-GaN layer thickness (L) was chosen as being either
2.0 or 4.0 nm. The QWEBL structure is simply realized by
closing the TMAl valve during the QW growth of the AlGaN
EBL. The growth temperature and pressure are kept at 980 °C
and 100 mbar the entire time. The thickness and composition
of each layer is precisely controlled with mole ratios and growth
time based on the calibration runs. The detailed schematic
structure is shown in Figure 1. The indium contacts on the epi-

wafers were made in a circular area of 1.5 mm diameter for
characterization purposes. The optical power was measured by
an integrating sphere attached to an Ocean Optics
spectrometer (QE65000), which was calibrated with a standard
light source.
On the basis of our grown structures, numerical simulations

were performed using APSYS to understand the working
mechanisms of the proposed QWEBL structures. The simulator
solves Schrödinger−Poisson equations self-consistently. The
simulation has also taken the Coulomb interaction into
consideration with the typical dielectric constants of III-
nitrides.11 The simulation parameters including the Auger
recombination coefficients, the Shockley−Read−Hall recombi-

nation coefficient, the energy band offset ratio for the MQWs,
and the polarization level for devices along the c-orientation can
be found in our previous publication.12

■ RESULTS AND DISCUSSION
Figure 2a−c show the simulated results of the hole
concentration distribution in the quantum wells for the
conventional EBL LED and the QWEBL LEDs at a current
density level of 35 A/cm2. As depicted in Figure 2a and b, the
hole concentration is much higher in each individual quantum
well in the QWEBL LED with the p-GaN QW thickness of 2
nm, compared to the conventional EBL LED. However, when
the thickness of the p-GaN QW is increased to 4 nm as shown
in Figure 2c, the hole concentration in the InGaN quantum
wells becomes lower than that in the conventional EBL LED.
Figure 2d highlights the hole concentration in the EBL region.
Figure 3 shows the electron concentration in the p-EBL and the
p-GaN region. It can be seen that the two QWEBLs enable a
lower electron leakage into the p-GaN region, which indicates
that the QWEBL allows for a better electron blocking effect
than the conventional EBL. Moreover as shown in Figure 3, a
higher electron concentration is observed in the p-EBL layer
and in the p-GaN region for the QWEBL LED with a 4 nm p-
GaN QW than that of the QWEBL LED with a 2 nm p-GaN
QW, indicating an even better electron blocking effect of the
latter. These results suggest that the electrons can be more
effectively confined in the MQW region and that the hole
injection efficiency can be improved remarkably by using the
QWEBL with L = 2 nm. As a result, the radiative recombination
rate in the LED with QWEBL is improved significantly as
shown in Figure 4 compared with the conventional EBL LED.
However, the radiative recombination rates will drop if the
GaN layer thickness is 4 nm. This is due to the stronger hole
confinement in the thicker GaN layer, as shown in Figure 2d.
Figure 5a−c present the energy band diagrams of the LEDs

with the conventional EBL and the QWEBL at 35 A/cm2. As is
well known, in conventional EBLs, due to the stronger
polarization effect in the QW region, the effective barrier
height of the EBL is reduced for electrons and increased for the
holes, which lowers the electron blocking capability and hinders
the injection efficiency of holes from the p-GaN region into the
MQWs.13 The combination of these effects results in a low hole
concentration in the InGaN MQWs and a large electron
leakage, as shown in Figures 2a and 3. However, as the
conventional EBL is replaced by the QWEBL, the effective
barrier height is changed with the insertion of the p-GaN QW
as shown in Figure 5. When the p-GaN QW is 2 nm thick, the
effective barrier height for electrons is increased from 366 meV
to 416 meV in the QWEBL LED, while its effective barrier
height for holes is reduced from 469 meV to 457 meV as shown
in Figure 5a and b. These changes in the effective barrier
heights for electrons and holes are the main cause of the
electron overflow reduction and the hole injection enhance-
ment. The constructive combinational effect of the electron
overflow reduction and the hole injection enhancement leads to
the enhancement of the radiative recombination rate as shown
in Figure 4b. Nonetheless, the change in the effective barrier
height is dependent on the thickness of the p-GaN QW. As the
p-GaN QW thickness is increased to 4 nm, although the
effective barrier height for electrons is increased from 366 meV
to 411 meV in the QWEBL LED, the effective barrier height for
holes is also increased from 469 meV to 479 meV in the
QWEBL LED, as shown in Figure 5a and c. The benefit of the

Figure 1. Schematic diagrams of the LEDs with the conventional EBL
(L = 0) and QWEBL (L = 2 and 4 nm).

ACS Photonics Article

dx.doi.org/10.1021/ph500001e | ACS Photonics 2014, 1, 377−381378



electron overflow reduction due to the increase of the effective
barrier height for electrons is offset by the reduction of hole

injection efficiency due to the increased effective barrier height
for holes. This leads to the lower radiative recombination rate
as shown in Figure 4c. The reasons for the p-GaN QW
thickness dependence of the effective barrier heights of the
QWEBL LED are related to the formation of quantized states
in the p-GaN QW and carrier tunneling process and will be
discussed separately in detail in another publication.
The experimentally measured external quantum efficiency

(EQE) and the optical power as a function of the current
density are depicted in Figure 6a and b for all the devices.
Compared to the conventional EBL LED, the best performance
is observed from the QWEBL LED with the p-GaN QW of L =
2 nm. When we evaluate the performance of the QWEBL LED
and the conventional EBL LED at the current density of 35 A/
cm2, the optical output power of the QWEBL LED is 585 mW,
which is about 10% higher than that of the conventional EBL
LED (530 mW). The efficiency droop of the QWEBL LED at
35 A/cm2 is only 16%. This is much smaller than that of the
conventional EBL LED, which is 31%. The improvement of the
optical power and the EQE is well attributed to the improved
hole injection and electron blocking in the QWEBL LED, as
demonstrated in Figures 2 and 3. However, the optical output
power of the QWEBL LED with L = 4 nm is even a little bit
lower than the conventional EBL LED at 35 A/cm2. This is
consistent with the theoretical simulation results shown in
Figures 2 and 3. Our results given above are quite different
from the prediction of Xia et al., while suggesting that a thicker
GaN layer leads to better performance. We believe that the
thicker p-GaN QW layer will trap more holes in the EBL region
due to the low mobility of holes, as shown in Figure 2d.
Meanwhile, the effect of the electron blocking will be reduced
due to the thinner effective thickness of the AlGaN layer, as
shown in Figure 3. Therefore, the thinner p-GaN QW in the
EBL layer is favorable not only for blocking the electrons but
also for easier transportation of holes from the p-type GaN

Figure 2. Simulated (a−c) hole concentrations of QWs for the conventional EBL LED and the QWEBL LED at the current injection level of 35 A/
cm2. (d) Hole concentrations within the EBL region for the conventional EBL LED and the QWEBL LED at the current injection level of 35 A/cm2.

Figure 3. Electron concentration in EBL and p-GaN for the
conventional EBL LED and the QWEBL LED at the current injection
level of 35 A/cm2.

Figure 4. Radiative recombination rates at 35 A/cm2 for the
conventional EBL LED and the QWEBL LED.
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region to the p-GaN QW of the QWEBL and finally to the
MQWs region due to the tunneling effect. It should be noted
that the conventional EBL LED shows a better performance at
very low current injection level. This could be due to the fact
that the initial hole confinement in the QW at low current
levels may affect the hole injection efficiency for the QW EBL
LED. As the hole tunneling effect increases rapidly with
increasing current due to the field-assistance and resonance
effects, the hole injection efficiency of the QW EBL LED will
surpass that of the conventional EBL LED. The high hole
injection efficiency combined with the high electron blocking
effect will lead to a better performance at high current levels for
the QW EBL LED.

■ CONCLUSIONS
In conclusion, blue InGaN/GaN MQW LEDs with the
conventional p-AlGaN EBL and the p-(AlGaN/GaN/AlGaN)
QWEBL have been investigated both numerically and
experimentally. When the QWEBL is adopted, the quantum
states are created, which results in the increase of the effective

barrier height for the electrons and the decrease of that for the
holes. Moreover, with the well-controlled thickness of the p-
GaN, more holes can tunnel into the MQWs from the p-type
GaN region. These effects prevent electron leakage into the p-
GaN region and improve the hole injection into the MQW
region, which enables the improved optical performance in the
LEDs with the proposed QWEBL.
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