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Abstract— In this paper, an equivalent circuit model for nested
split-ring resonators (NSRRs) is proposed. NSRRs are an emerg-
ing class of split ring resonators, preferred in a range of areas
from sensing in biomedical or civil engineering applications to
antenna design, due to their more compact size and enhanced
sensitivity/resolution characteristics over the conventional SRRs.
In the proposed model, the NSRR structure is treated as
a combination of basic elements, i.e., strips and gaps, and
the electromagnetic characteristics of the whole geometry are
expressed in terms of capacitances and inductances of each of
these elements. The outputs of the model are compared with those
obtained via full-wave simulations using the package programs
as well as measurements. The variation of NSRR resonance
frequency ( fres) with all important design parameters is also
compared with full-wave simulations. In all comparisons, the
results demonstrate agreement, showing that the proposed model
can correctly explain the electromagnetics of the NSRR structure
and that it provides an intuitive way for a better and easier
analysis and a preliminary design of normally complex structures.

Index Terms— Equivalent circuit model, nested split-ring res-
onator (NSRR), split-ring resonator (SRR), strain/displacement
sensor, wireless passive sensor.

I. INTRODUCTION

SPLIT-RING resonators (SRRs) have traditionally been the
building blocks of metamaterials or metamaterial-inspired

structures since they were first proposed in [1]. Since then,
SRRs have been exploited in a wide range of applications
including transmission lines [2], antennas [3], filters [4], and
sensors [5], along with many other uses. In [6]–[22], equivalent
models of different types of two or 3-D SRRs (classical, cross
embedded, U-shaped, etc.) have extensively been studied and
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models based on different distributed line or lumped circuits
were shown. In [18], analytical equivalent circuit models were
proposed for SRRs and complementary SRRs, both for the
isolated structures and for metamaterials, coupled to planar
transmission lines to obtain effective negative constituent
parameters. Equivalent models for structures incorporating
SRRs coupled to transmission lines were further studied in
detail [19]–[22].

Although SRRs have found a wide area of usage, they
have been shown to have drawbacks for certain applications
including sensing. Especially in the area of biosensing, in order
to avoid the background absorption of soft tissue, a lower
operating frequency is required along with a compact size for
the sensor to be able to be placed in vivo [23]. The size of the
conventional SRRs proves to be too large at lower frequencies
for this purpose. Besides, in all sensing applications, an
increased level of sensitivity is desired. Therefore, a new type
of SRR was proposed in [23], called nested SRRs (NSRRs),
which offer both a more compact size and a better sensitivity
compared with classical SRRs. In this structure, there exist a
number of parallel strip pairs that are connected from one side
but symmetrically separated from the other by a gap between
every pair. Each strip forms a path with the uppermost strip
that is split by this gap, and therefore, the whole structure
can be considered as a combination of nested split rings. The
smaller size of the NSRR becomes possible via an increase
in the number of metal strips, which in turn increases the
overall capacitance and inductance of the structure and lowers
the resonance frequency. Also, by the increased number of
gaps, a high-Q resonator characteristic is achieved, bringing in
better sensitivity and resolution. Although originally proposed
for biosensing, the NSRRs have since been adapted to a
diverse range of applications because of these advantages. The
NSRR structure was employed in different antenna designs
in microwave and optical frequencies [24]–[26]. A compact
low-phase noise oscillator with superior harmonic suppression
characteristics was developed with NSRR geometry [27].
Additionally, a compact NSRR-based filter [28] and an NSRR
microwave thin-film sensor [29] were shown. The NSRR
structure was further modified for displacement and strain
sensing by splitting it into two mechanically independent
halves and electrically connecting these two parts by a thin
wire [30]. This modified NSRR structure was demonstrated
to provide significant advantages in structural health mon-
itoring, where wireless, passive, and compact sensors with
the capability of measuring very small displacements are in
high demand [30]–[33]. Despite having the superiority over
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the conventional SRR geometry in terms of sensitivity and
compactness and being increasingly utilized in different appli-
cation areas, an equivalent circuit model, which can explain
the operation of the NSRR, has not been covered in literature.
Such an equivalent model is required for better analysis and
intuition of the physics of these structures. Furthermore, such a
model is functional in facilitating the design of these complex
structures, which normally employ a large number of strips
and gaps. Finally, the applicability of the NSRR model to
other SRR types would be easier (since NSRR is generally
more detailed and complex) after necessary modifications.

In this paper, an equivalent circuit-based model of the NSRR
is presented. The proposed circuit model is adaptable to both
the classical and the modified NSRR structures. The model
parameters originate from capacitances and inductances of
simple shapes such as a piece of planar transmission line or
two parallel wires, which are combined here to come up with
the working principle of the whole NSRR. Therefore, rather
than curve fitting to numerical or experimental results, the
element values are derived from the physics of each structure,
which is an important point to emphasize. Here, the NSRR
structure is treated as a combination of strips and gaps between
them, and the electrical and magnetic interactions of each strip
with all the others are taken into account. The proposed model
is able to adapt to the variation of different design parameters,
with which the resonance frequency of the structure can be
modified. Apart from the equivalent circuit model, another
approach for modeling the NSRR is to treat each NSRR half
as a multiconductor transmission line by setting the ground
plane height relatively high to avoid coupling. On the other
hand, this approach leads to less accurate results since the
effects of the mutual inductances between the strips are not
taken into account. In Section II, the geometries of the classical
and modified NSRR are explained. In Section III, all model
parameters are introduced and discussed in detail. In addition,
formulas required for finding each parameter are derived. In
Section IV, the methodology for the validation of the model
results is described through a discussion of the simulation and
measurement setups. In Section V, the outputs of the equivalent
circuit model are compared with the results obtained from
the measurements and full-wave simulations performed by
CAD packages. Finally, conclusions derived from the study
are discussed in Section VI.

II. CLASSICAL AND MODIFIED NSRR GEOMETRIES

The NSRR geometry modified for sensing the displacement
in the direction of the strips is shown in Fig. 1. The whole
structure consists of metallic strips printed on a dielectric sub-
strate. Here, the edge-to-edge distance between two separated
and mechanically independent parts of the structure is denoted
by d . Likewise, l represents the length of the thin wire used
to electrically short the uppermost strip. It is noted that in the
classical NSRR geometry, the uppermost strip is continuous
and there is no wire, making the separation between strip
pairs d0, which is the initial separation (see Fig. 1). Hence,
the classical NSRR is a special case of the modified NSRR
structure, which is obtained by setting d = 0 and l = 0.

Fig. 1. NSRR geometry modified for displacement sensing. The structure
is transformed to the classical NSRR geometry when d = 0 and l = 0 (and
hence the uppermost strip is continuous).

In the modified NSRR geometry, an additional versatility is
introduced by d and l, which can be used for modifying the
resonance frequency fres of the whole NSRR structure even
after its fabrication. When a mechanical effect leads to an
elongation or deformation of the structure on which the NSRR
sensor is placed along one direction, this leads to a change
of the overall capacitance and/or inductance of the sensor,
resulting in a shift of fres. This shift can be characterized by
extraction of a d– fres curve for different media mimicking the
environment in which the sensor is going to be placed. The
measurement of displacement then becomes possible using the
d– fres curve for transformation from the measured frequency
change into the absolute d value. Similarly, for the classical
NSRR geometry, the variation of fres with the induced strain
is tracked. N , ld , D, and w and ls shown in Fig. 1 denote the
number of the parallel strip pairs (including the uppermost
continuous strip), the NSRR side length, the gap between
the adjacent strips, and the width and length of a strip,
respectively. Especially N is important for determining fres
before the fabrication of the structure, while other parameters
play roles in determination of the structure capacitances and
inductances.

III. EQUIVALENT CIRCUIT MODEL

The proposed equivalent circuit model of NSRR is a repre-
sentation that is valid only around the fundamental resonance
frequency, which is obtained when the NSRR is in its fun-
damental mode of operation. This mode can be considered
as a TE mode, in which the NSRR is excited by a plane
wave in horizontal polarization, i.e., when the incident E-
field is along the direction of the strips and gaps. In order
to explain higher order modes, approaches different than the
proposed model would be necessary, which are out of the
scope of this paper. In the model, the NSRR comprises N
stages, each of which represents an opposing strip pair. There
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Fig. 2. Proposed equivalent circuit model for NSRRs showing the parameters of the model.

exist four independent lumped parameters in the model, two
capacitances (Cs and Cgap) and two inductances (Ls and
Lwire). Lwire is present only for the modified NSRR geometry,
and it is replaced by a short in the classical structure. The
resistive or dielectric losses are ignored since they are too
low to be considered at the operation frequency. The details
regarding these parameters are as follows.

1) Cs: This is the capacitance between two coplanar parallel
strips. Therefore, the number of Cs is N − 1 for each of the
two mechanically separated NSRR parts. Cs , along with the
inductance of each strip Ls , are divided into m segments as
shown in Fig. 2. The reason for this is the following: when
Cs and Ls are considered as the parameters of a lossless
planar transmission line [e.g., coplanar stripline (CPS)], more
accurate results are obtained through expressing them as
distributed parameters instead of single lumped elements. This
way, the structure resembles the equivalent circuit model of a
lossless transmission line. The value of the capacitance of each
segment from Cs,1 to Cs,m is simply assumed to be equal, and
is given by

Cs,1 = Cs,2 = · · · = Cs,m = Cs

m
. (1)

Several approaches can be utilized for the calculation of Cs .
In this paper, each parallel strip pair will be treated as a CPS,
from which the line capacitance can be calculated as Cs .
The parallel strips are shorted from one side, but this does
not constitute a problem since a shorted CPS can still be
modeled as a transmission line without a discontinuity [34].
A single-layer CPS illustration is shown in Fig. 3. Using
conformal mapping, the per-unit-length capacitance of such
a transmission line, Cs,cps, is given as [35], [36]

Cs,cps = ε
cps
r,effε0

K (k)

K (k ′
)

(2)

where ε
cps
r,eff is the effective relative permittivity of the CPS,

ε0 is the free-space permittivity, and K denotes the complete

elliptical integral of the first kind. The arguments k and k
′

are functions of the physical parameters of the line and are
given as

k =
√

1 −
(a

b

)2
(3)

and

k
′ =

√
1 − k2 = a

b
(4)

where a and b are the half of the inner and outer edge-
to-edge distances of the two plate conductors of the CPS
geometry, respectively, as shown in Fig. 3. The effective
relative permittivity of the CPS ε

cps
r,eff is found as [35], [36]

ε
cps
r,eff = 1 + 1

2
(εr − 1)

K (k)K
(
k

′
1

)
K (k ′

)K (k1)
(5)

where εr is the relative permittivity of the substrate, and
k1 and k

′
1 are defined as

k1 =
√

1 − sinh2(πa/2h)

sinh2(πb/2h)
(6)

and

k
′
1 =

√
1 − k2

1 (7)

where h is the thickness of the substrate as shown in Fig. 3.
By comparing Fig. 3 with Fig. 1, one can deduce that in the
formulas, a = D/2 and b = (2w + D)/2, where w and D
are the strip width and the edge-to-edge gap between two
coplanar strips, respectively, as shown in Fig. 1. An NSRR
structure shown in [30], which is designed to operate at around
435 MHz for displacement sensing in structural health moni-
toring, has the following parameters: N = 29, w = 0.800 mm,
D = 0.800 mm, h = 0.508 mm, ls = 21.6 mm, and εr = 3.2.
For this structure, ε

cps
r,eff is calculated as 1.67. It should be noted

that ε
cps
r,eff is only a function of the physical dimensions and
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Fig. 3. Schematic of the parameters of a single-layer CPS.

substrate dielectric constant, and is independent of N . Then,
the undistributed capacitance Cs [given in (1)] is found as

Cs = Cs,cpsls = 0.524 pF. (8)

This value is further divided into m in circuit analysis.
2) Ls: This is the total average inductance of each one

of the strips. For more accuracy, similar to Cs , Ls is also
divided into m segments (shown in Fig. 2) as in the lossless
transmission line model. The inductance of each segment from
Ls,1 to Ls,m is again assumed to be equal, and is given by

Ls,1 = Ls,2 = · · · = Ls,m = Ls

m
. (9)

Ls is composed of three components. The first component is
the self-inductance of each strip, Ls,self. The second one is
the effect of the average mutual inductances coming from the
strips parallel to a particular strip, denoted by M . The final
component is the effect of the average mutual inductance of a
strip with the strips that lie at the other half of the NSRR,
and is denoted by Mr . The calculation methods for these
components are described below.

For finding the self-inductance of a strip Ls,self, the flat wire
or ribbon inductance formula can be utilized, and is given
in [34] and [37] as

Ls,self = 2ls

[
ln

(
2ls

w + t

)
+ 0.5 + 0.2235

(
w

ls

)]
(nH) (10)

where t is the metal thickness and can be ignored in our study
since the operation frequency is too low to include its effect.
The other two parameters ls and w are shown in Fig. 1.

M and Mr , which are the mutual inductance components
of Ls , should normally be treated by introducing a polarity
to mutual inductive coupling of the strips with each other.
In other words, the interaction of each strip with all the remain-
ing ones should be taken into account via transformers with
a polarity, which defines the directions and the magnitudes
of the voltages due to these currents at each node. However,
this approach would be problematic since N is generally high,
leading to a highly complicated network. In the simulations
where the NSRR probe is illuminated by a plane wave, it is
observed that the induced currents at all strips (I ’s) are equal
in direction and magnitude, which is also reasonable due to the
symmetry of the structure. Therefore, the mutual inductances
can be considered as series to the strip inductances, and Ls

can simply be taken as the addition of the three components,
i.e., Ls = Ls,self + M + Mr .

M , which is the total mutual inductance of the strips parallel
to it, can be calculated by employing the coplanar parallel

Fig. 4. Diagram showing the geometry for calculating mutual inductance
between two parallel thin tapes.

thin tape mutual inductance formulation given in [38] for the
corresponding geometry shown in Fig. 4. The formulation is
as follows:

M(E)

= 0.001

w1w2

[[(
x2z

2
ln(z +

√
x2 + z2 )

+ xz2

2
ln(x +

√
x2 + z2 ) − 1

6
(x2 + z2)

×
√

x2 + z2

)]E−w1,E+w2

E+w2−w1,E
(x)

]l3−l1,l3+l2

l3+l2−l1,l3

(z)

(11)

where

[[ f (x, z)]q1,q3
q2,q4(x)

]s1,s3
s2,s4

(z) =
4∑

i=1

4∑
k=1

(−1)i+k f (qi , sk)

with l1 and l2 and w1 and w2 are the lengths and the widths
of the strips, respectively, while l3 is the shift of the second
strip with respect to the first strip in the z-axis, as shown in
Fig. 4. Here, M is in microhenries.

In (11), E is the outer-to-inner edge distance between the
wires along the x-axis. In order to calculate M for a strip, the
mutual inductances coming from each parallel strip should
be combined by setting Ei = 2 − D, 4 − D, 6 − D, . . . ,
where Ei represents the distance between the middle section
of the first strip and that of a strip parallel to the first
strip (see Fig. 4). The reason for this can be explained as
follows: between two adjacent parallel strips, E1 = w + D.
However, in the NSRR design, w is generally set equal to D.
Therefore, E1 = w + D = 2 − D, whereas for second
adjacent strips, E2 = D + w + D + w = 4 − D, and
so on. Hence, the total mutual inductance can be calculated
using (11) with a changing E for the contribution of each strip,
setting l3 = 0. On the other hand, one should also consider the
magnetic fields that cancel each other for a strip on the NSRR
structure. In Fig. 5, the calculation of the total M is shown for
N = 3, 4, 5. As mentioned before, an equal current of I
is assumed to be induced at every strip. Then, under the
equal current assumption, the magnetic fields due to I s from
symmetric up and down strips cancel each other for a specific
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Fig. 5. Calculation of the mutual inductance Mtotal between parallel strips
for N = 3, 4, 5.

strip. For instance, in Fig. 5, for N = 3, the mutual inductance
at the center strip M2 is zero due to cancellation of fields.
However, for M1 and M3, contributions from the strips, which
are 2 = D and 4 = D away, are included. The total mutual
inductance Mtotal is then the sum of M1/2, M2/2, and M3/2,
where division by 2 is to avoid including the same mutual
inductance twice. This reasoning is valid for any N , but for
even N , zero M is not produced for any strip. The formulations
of M for even and odd N are as follows:

Odd N : Mtotal =
N+1

2∑
k=2

(k − 1)M[(2k − 2)D]

+
N∑

k= N+3
2

(N − k + 1)M[(2k − 2)D]. (12)

Even N : Mtotal =
N
2 +1∑
k=2

(k − 1)M[(2k − 2)D]

+
N∑

k= N
2 +2

(N − k + 1)M[(2k − 2)D]. (13)

In this formulation, Mtotal gives the sum of all mutual induc-
tances from all strips in parallel. However, the effect of Mtotal
has to be squeezed inside a single strip via Ls in the equivalent
circuit model. In order to reflect it on Ls as an average value,
it is assumed that Mtotal is distributed to every strip equally,
and thus should be divided by N

M = Mtotal

N
. (14)

For a hypothetical case where N → ∞, Mtotal would be
distributed to every strip exactly equally. Since generally a
high number of N is of interest for the NSRR geometry,
this condition is approached, making the assumption of equal

distribution of mutual inductances a plausible one (especially
for high N).

Mr is the mutual inductance of each strip with all opposing
strips, i.e., the strips that stay on the other mechanically
separated NSRR half. For the calculation of Mr , (11) can again
be used with the exception that l3 is now not 0 but a value that
changes with d , where d is the edge-to-edge distance between
two separated parts of the modified NSRR (as shown in Fig. 1).
In order to obtain Mr,total, the mutual inductance of a strip with
all opposing strips should be combined in a fashion similar to
the calculation of Mtotal. For every strip pair, (11) should be
used by setting l3 = ls + d + d0. However, for the calculation
of Mr,total, different from the algorithm described in Fig. 5,
the contribution of the uppermost strip is not included since
it is continuous and does not have a gap with the opposing
strips. Also, mutual inductance of a strip with the directly
opposing one is not considered since the magnetic field is
negligible along the axis of the strip. The cancellation of fields
again takes place for even N for the middle strip excluding
the uppermost strip. The formulation of Mr for odd and even
N is then as follows:

Odd N : Mr,total =
N+3

2∑
k=3

(k − 2)M[(2k − 4)D]

+
N∑

k= N+5
2

(N − k + 1)M[(2k−4)D] (15)

Even N : Mr,total =
N
2 +1∑
k=3

(k − 2)M[(2k − 4)D]

+
N∑

k= N
2 +2

(N − k + 1)M[(2k−4)D] (16)

where Mr,total gives the sum of all mutual inductances from
the opposing strips. By the same reasoning for Mtotal, in order
to reflect Mr,total on Ls , which is the inductance of a single
strip, Mr,total should be divided by N

Mr = Mr,total

N
. (17)

After calculation of the self-inductance of each strip and the
mutual inductances coming from the parallel and opposing
strips, the average inductance reflected in Ls can be written as

Ls = Ls,self + M + Mr . (18)

For the application of displacement sensing, d changes with
a mechanical effect causing a relative displacement in that
direction, and hence Mr and Ls become dependent on d .

3) Cgap: This is the capacitance between an opposing strip
pair. Hence, the number of Cgap in the model is N − 1.
Again, different approaches can be taken for finding Cgap. The
microstrip discontinuity formulas available in [39] and [40] do
not apply due to the presence of the bottom conductor. Here,
the best approach seems to be modeling the opposing strip
pair as a piece of a thick and very short CPS, where w is the
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TABLE I

CHANGE OF LWIRE WITH l (rw = 0.1 mm)

length of the line and 2a = d +d0 and 2b = 2ls +d +d0, when
the notation in Fig. 3 is employed. Then, Cgap is given by

Cgap = ε
cps
r,effε0

K (k)

K (k ′
)
w (19)

where

k =
√

1 −
(

d + d0

2ls + d + d0

)2

(20)

and

k
′ =

√
1 − k2 = d + d0

2ls + d + d0
. (21)

The effective relative permittivity of the CPS ε
cps
r,eff is again

taken as 1.67 from (5) for the set of physical parameters
mentioned before. Similar to Mr , Cgap is also a function of d .
For the application of displacement sensing, the effect of the
decrease in Cgap becomes dominant and leads to an increase
in fres.

4) Lwire: The uppermost strip is continuous in NSRR geom-
etry, and this can be achieved via a thin wire when the whole
structure is symmetrically split into two halves. As previously
mentioned, another function of this shorting wire is to help
tuning fres by assigning different values for l, the wire length.
Lwire does not exist for the classical NSRR (when the structure
is not split into two parts), in which case it can be replaced
by just a short. In the literature, there are several variations
of the formula for the self-inductance of a thin wire, all of
which yield very approximate results for Lwire. Here, the wire
inductance is found as [41]

Lwire = 2l

[
ln

(
2l

rw

)
− 3

4

]
(nH) (22)

where rw is the radius of the wire. Lwire is shown for several
values of l in Table I for rw = 0.100 mm. As mentioned
before, mutual impedance due to Lwire is not considered.

The equivalent circuit model parameter values obtained for
six different N between 5 and 29 as well as for d = 0
and d = 5 mm are given in Table II for the following set
of physical dimensions: w = 0.800 mm, D = 0.800 mm,
d0 = 0.800 mm, ls = 21.6 mm, h = 0.508 mm, and εr = 3.2.
It should be noted that Cs , Cgap, and Ls,self are independent
of N , whereas the mutual inductances M and Mr change with
N . Cgap and Mr are the only two parameters that are functions
of d . Only Lwire is a function of l, of which variation is shown
in Table I and is not repeated here. In addition, the variations
of the inductance parameters in the model (Ls,self, M , Mr

and the total inductance Ls ) with N are shown in Fig. 6.
It can be observed in Fig. 6 that the slopes of M and Mr

start to decrease as N is increased, meaning that the addition
of extra strips starts to be somehow ineffective for decreasing
the resonance frequency above a certain N .

Fig. 6. Change of average strip inductance Ls and its components Ls,self,
M, and Mr with the number of strips N for the classical NSRR geometry
(d = 0 and l = 0).

IV. SIMULATION AND MEASUREMENT SETUP

A. Simulation of the Model

Simulations of the equivalent circuit model illustrated in
Fig. 2 are carried out in Ansoft Designer. In the simulations,
two high-impedance ports are defined at either side of the
circuit so as not to disturb the resonator characteristics. In such
a setup, the frequency of resonance ( fres) can be determined by
observing the transmission spectrum, i.e., tracking the position
of the dip frequency of the magnitude of S21 (the frequency
where the phase crosses 0◦ can also be used for this purpose).
A typical S21 magnitude and phase plot is shown in Fig. 7
for the classical NSRR geometry (d = 0 and l = 0) when
N = 29. It can be observed that fres = 535 MHz for that
particular case.

B. Full-Wave Simulation Setup

In order to verify the circuit model results, two sets of
full-wave simulations are performed in CST Microwave Stu-
dio. In the first set of simulations, the NSRRs are excited by
a plane wave in horizontal polarization (E-field parallel to
the orientation of the strips) [30]. The goal of this simulation
is to see the effect of N on the NSRR resonance frequency.
The set of physical dimensions and electrical properties given
in Table II is used for the simulated NSRR. The variation
of fres obtained from the model for every N from 3 to 29
is compared with the full-wave simulation results in Fig. 8.
It should be noted that the structure takes a square shape
only when N = 29 with the given parameter set. In the
simulations, as N is increased, w and D are kept constant.
Since ls also remains the same, the edge lengths take different
values and the ratio of the higher to lower edge length is
inversely proportional to N , becoming 1 only when N = 29.
In Fig. 8, the variation of fres is also shown when the
number of line segments m is set as 5, 10, and 15. It can
be observed that the case when m = 5 exhibits a relatively
lower resonance frequency, but for higher m, fres does not
vary much. Therefore, for the sake of accuracy and simplicity
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TABLE II

EQUIVALENT CIRCUIT MODEL PARAMETERS FOR DIFFERENT N AND d VALUES (w = 0.800 mm, D = 0.800 mm, d0 = 0.800 mm, ls = 21.6 mm,
h = 0.508 mm, AND εr = 3.2; Cs AND CGAP ARE IN PICOFARADS; Ls,SELF , M , AND Mr ARE IN NANOHENRIES; AND d IS IN MILLIMETERS)

Fig. 7. Typical transmission spectrum plot obtained via the proposed
equivalent circuit model, where the magnitude and phase of S21 are shown.
Here, N = 29, d = 0, and l = 0 (classical NSRR geometry).

of the equivalent model, the results for m = 10 are presented
for the rest of the examples in this paper. Fig. 8 demonstrates
that there is a correlation between the full-wave simulations
and the proposed circuit model in terms of both the trend of
variation and the absolute values of fres. An important point
is that the NSRR structure reduces to one of the rings of the
well-known edge-coupled SRR geometry when N = 2, which
by itself is also used as a unit cell in metamaterials. This
limiting case is important in terms of the adaptability of the
model to other SRR types.

In the second set of full-wave simulations, the goal is to
observe the effects of the change of d and l on the resonance
frequency of the modified NSRR. In a practical sensing
application, after the fabrication, d and l can be adjusted to
determine fres before the NSRR is installed as a sensor. By the
coupling between a transceiver antenna and the NSRR, the
resonance of NSRR can be observed in the form of a peak at
the reflection coefficient of the antenna [30], [31]. Therefore,

Fig. 8. Change of fres with N , shown for both equivalent circuit model and
full-wave simulations. Here, d = 0 and l = 0.

in these simulations, the whole measurement setup is simulated
including the antennas. In both measurements and simulations,
fres is recorded and compared with the result obtained from
the proposed equivalent circuit model. In the case where a
sniffer coil is used for excitation, the NSRR resonance occurs
at the off-resonance of the coil, and the coupling is lower
compared with the antenna excitation. Therefore, the full-wave
simulation for this case is not included. The results of these
simulations are shown and discussed in Section V.

C. Measurement Setup

The variation of fres with the sensing and tuning parame-
ters d and l is an important indicator of the accuracy of the
model for the modified NSRR geometry. In order to compare
the model results with those of the measurement, modified
NSRRs are fabricated with the set of physical dimensions
given in Table II for two different N values: N = 10 and
N = 29. The fabricated modified NSRRs are shown in Fig. 9.
Two separate sets of mesurement data are taken with two
different excitation sources: a microstrip single-slot antenna
and a coil. As the first set of measurements, two single-slot
microstrip antennas are designed at the resonance frequency
range of the NSRRs with N = 10 and N = 29. With
a sufficient bandwidth, it is possible to capture the shifting
resonance frequency of the NSRR. The NSRR is placed
within the near field of the antenna (at a distance smaller
than the operation wavelength) in order to form a strong
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Fig. 9. Diagram of the measurement setup and the fabricated modified NSRR
structures for N = 29 and N = 10.

electromagnetic coupling between the two structures, from
which high-resolution and high-sensitivity sensing becomes
possible. The NSRR orientation has to be such that the
E-field is in the direction of the strips; no coupling is observed
in the case of cross polarization. In the measurements, the
antenna transmits the signal from the network analyzer (Agi-
lent FieldFox N9915A) and collects back the scattered waves,
as shown in Fig. 9. The distance between the antenna and the
NSRR is set to 10 cm. The setup employed to carry out the
measurements is covered in detail in [30].

As the second set of measurements, the same procedure
was repeated with a coil, called a sniffer coil, which can be
used to pick up the resonance characteristics through inductive
coupling (see Fig. 9). Unlike the antenna, the coil captures
the NSRR resonance at its own off-resonance, where the
NSRR resonance is observed as a notch at the coil spectrum.
This second measurement forms an alternative to the antenna
excitation, and is necessary to make sure that the frequency
measured from the antenna via the electromagnetic coupling
is very close to NSRR resonance frequency.

V. RESULTS

The measurement and full-wave simulation results (for the
cases of antenna and plane wave excitation) are compared with
those of the equivalent circuit model for two different NSRR
structures with N = 10 and N = 29. The variation of fres
with the sensing parameter d is shown in Fig. 10 for an l value
of 4 cm. As observed in Fig. 10, the resonance frequencies
obtained by both the antenna and the coil excitations are
close. The full-wave simulation results are shown for both the
antenna excitation and the plane wave excitation. It is observed
that the resonance frequencies obtained at the plane wave exci-
tation are between the results of the equivalent circuit model
and of the full-wave simulations with the antenna excitation.
The difference between the simulation and measurement for
antenna excitation is due to the difficulty of thoroughly mim-
icking the measurement setup. Factors such as the effect of the
clutter (surrounding objects) or the orientation of the shorting
wire of the NSRR play an important role in this difference.
Despite these factors, it is seen that the model produces results
that are close to the full-wave simulations and measurements.
It is apparent that the agreement of the equivalent circuit model
is better when N = 29 in comparison with when N = 10.
As mentioned before, when N = 29, a square-shaped structure

Fig. 10. Change of resonance frequency fres with displacement between
the opposing strips d, which is obtained from the equivalent circuit model,
compared with the results of measurement and full-wave simulation for the
modified NSRR geometry. l = 4 cm for simulations and measurement.

Fig. 11. Change of resonance frequency fres with shorting wire length l,
which is obtained from the equivalent circuit model, compared with the results
of measurement and full-wave simulation for the modified NSRR geometry.
d = 4 mm for simulations and measurement.

is obtained with the used set of physical dimensions. However,
for N = 10, the result is a rectangle-shaped structure in
which the edge where strips are elongated is much longer
than the other edge. From Figs. 10 and 11, as well as from
the variation of the model resonance frequency with N shown
in Fig. 8, it can be concluded that the model works better for a
bigger size and a square-shaped structure in comparison with
a rectangular-shaped structure.

The change of fres with the tuning parameter l is also of
interest for the modified NSRR geometry. In the experiments
performed to characterize this change, the shorting wire length
was changed from 2 to 9 cm, while d was kept constant at
4 mm. The measurement results are compared with those of
the equivalent circuit model in Fig. 11 again for N = 10 and
N = 29. The trends of the variation of the measurement and
the model resonance frequencies are observed to be in good
agreement for N = 29. For N = 10, the agreement of model
and measurement results can still be considered reasonable in
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Fig. 12. Percentage error in fres at different values of d and l, for N = 10
and N = 29.

terms of the trends of the curves despite the aforementioned
disproportion of shape as N is decreased. Although the mea-
surement and full-wave results are not exactly on top of each
other in Figs. 10 and 11, they are close and their trends are
very similar. For N = 10, the discrepancy between the full-
wave and measurement results is higher, because the resonance
frequency is higher. This can be observed in Fig. 12, where
the percentage errors at different d and l values are shown
for N = 10 and N = 29. The percentage error is defined as
follows:

Percentage error =
∣∣∣∣ fres,ecm − fres,coil

fres,coil

∣∣∣∣ × 100 (23)

where fres,ecm and fres,coil are the resonance frequencies
obtained from the equivalent circuit model and from the
measurements with coil excitation, respectively. The coil mea-
surement is taken as a reference to represent the worst case
scenario (highest error value). For both parameters, the worst
case error generally seems to be within the range 7%–20%.

The adaptability of the proposed model to the change in
physical dimensions, such as the width and length of each
strip, is also examined, and the results are given in Fig. 13.
Unlike the case where the effect of N was investigated on the
resonance frequency, here the square shape of the classical
NSRR structure is preserved in a given range of ld , the NSRR
side length, by varying both w and ls to come up with each
ld value. The results shown in Fig. 13 are for 7 values of
ld changing from 11.4 mm to 79.8 mm in 11.4 mm steps
for a structure with N = 29. For these ld values, the strip
widths are wi = 0.2, 0.4, . . . , 1.4 mm, and the strip lengths
are ls,i = 5.4, 10.8, . . . 37.8 mm, where i = 1, 2, . . . , 7.
It should also be noted that Di = d0,i = wi at each case.
In the graph, it can be observed that the model results are
matched to those produced by the full-wave simulations when
the NSRR shape is a square. The NSRRs are excited by a plane
wave in the full-wave simulations. The agreement between
the model results and the simulations is especially strong for
larger physical dimensions. In fact, with the exception of the
circular SRRs, an equilateral SRR geometry is almost always
preferred as a unit cell in metamaterials or for other purposes

Fig. 13. Change of resonance frequency fres with the square NSRR side
length ld , which is obtained from the equivalent circuit model, compared
with the result of the full-wave simulation for the classical geometry. Here,
wi = 0.2, 0.4, . . . , 1.4 mm, and ls,i = 5.4, 10.8, . . . 37.8 mm, i = 1, 2, . . . , 7.

in the literature. Hence, the agreement in Fig. 13 is significant,
proving that the model is adaptable to a wideband range of
fres from a few hundred megahertz to several gigahertz in
practice.

VI. CONCLUSION

In this paper, a rigorous and highly accurate equivalent
circuit model is proposed and demonstrated for modeling
NSRRs. In order to test the accuracy of the proposed equiva-
lent circuit model, the change of resonance frequency with the
variation of various design parameters is investigated for the
classical and modified NSRR geometries, and the results that
are obtained from the model are compared with those from the
full-wave simulations and measurements. A good agreement
is observed, demonstrating that the approach to the problem is
correct. Two different sources are used as an excitation in the
measurements: an antenna operating at its near field, which
captures the NSRR response within its resonance bandwidth,
and a sniffer coil, which tracks the NSRR resonance at its
own off-resonance case. The equivalent circuit model results
are observed to be especially accurate when the NSRR shape
is square rather than rectangular, which is a much more
common geometry. Through modification of parameters and
employing the suitable formulas, the approach embraced here
can be adapted to other types of planar metamaterial-inspired
structures, mainly, other variants of SRRs. For example, as a
limiting case, the classical NSRR geometry reduces to a one-
ring edge-coupled SRR geometry. The fact that the inductance
and capacitance values stem from the physics of the structure
instead of curve fitting to numerical or experimental data, and
the adaptability to a wide range of frequencies and physical
dimensions shows that the proposed model offers a better and
more efficient way of analysis and can act as preliminary
design tool for the NSRR structures. However, due to a
relatively high percentage error ranging from 7 to 20, it would
need to be improved in case the model is intended to be used
for a very accurate design.



3742 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 65, NO. 10, OCTOBER 2017

REFERENCES

[1] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism
from conductors and enhanced nonlinear phenomena,” IEEE Trans.
Microw. Theory Techn., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.

[2] F. Martín, J. Bonache, F. Falcone, M. Sorolla, and R. Marqués, “Split
ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett.,
vol. 83, no. 22, pp. 4652–4654, Nov. 2003.

[3] K. B. Alici and E. Ozbay, “Electrically small split ring resonator
antennas,” J. Appl. Phys., vol. 101, no. 8, p. 083104, Apr. 2007.

[4] W. Che, C. Li, K. Deng, and L. Yang, “A novel bandpass filter
based on complementary split rings resonators and substrate integrated
waveguide,” Microw. Opt. Technol. Lett., vol. 50, no. 3, pp. 699–701,
Mar. 2008.

[5] H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at
microwave regime,” Appl. Phys. Lett., vol. 92, no. 25, p. 254103,
Jun. 2008.

[6] R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy
in negative permeability and left-handed metamaterials,” Phys. Rev. B,
Condens. Matter, vol. 65, no. 14, p. 144440, Apr. 2002.

[7] G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, “Transmission line
models for negative refractive index media and associated implementa-
tions without excess resonators,” IEEE Microw. Wireless Compon. Lett.,
vol. 13, no. 2, pp. 51–53, Feb. 2003.

[8] H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong,
“Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys.,
vol. 100, no. 2, p. 024915, Jul. 2006.

[9] L. J. Rogla, J. Carbonell, and V. E. Boria, “Study of equiv-
alent circuits for open-ring and split-ring resonators in coplanar
waveguide technology,” IET Microw., Antennas Propag., vol. 1, no. 1,
pp. 170–176, Feb. 2007.

[10] T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel,
and R. J. Phaneuf, “Optical plasmonic resonances in split-ring res-
onator structures: An improved LC model,” Opt. Exp., vol. 16, no. 24,
pp. 19850–19864, Nov. 2008.

[11] H. Bahrami, M. Hakkak, and A. Pirhadi, “Analysis and design of highly
compact bandpass waveguide filter utilizing complementary split ring
resonators (CSRR),” Prog. Electromagn. Res., vol. 80, pp. 107–122,
2008.

[12] S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-S. Xie, D.-B. Tian, and Y.-X. Li,
“Improved TL-RLC model for terahertz circular split-ring resonators,”
Appl. Phys. A, Solids Surf., vol. 100, no. 2, pp. 461–466, Aug. 2010.

[13] O. A. Safia, L. Talbi, and K. Hettak, “A new type of transmission line-
based metamaterial resonator and its implementation in original appli-
cations,” IEEE Trans. Magn., vol. 49, no. 3, pp. 968–973, Mar. 2013.

[14] A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott,
“Dual-mode behavior of the complementary electric-LC resonators
loaded on transmission line: Analysis and applications,” J. Appl. Phys.,
vol. 116, no. 8, Aug. 2014, Art. no. 083705.

[15] T. Zhang, W. Xiong, B. Zhao, J. Shen, C. Qiu, and X. Luo, “Equivalent
circuit analysis of ‘U’-shaped split ring resonators,” J. Mod. Opt.,
vol. 62, no. 11, pp. 901–907, Jun. 2015.

[16] A. A. Abduljabar, X. Yang, D. A. Barrow, and A. Porch, “Modelling and
measurements of the microwave dielectric properties of microspheres,”
IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4492–4500,
Dec. 2015.

[17] R. Bojanic, V. Milosevic, B. Jokanovic, F. Medina-Mena, and F. Mesa,
“Enhanced modelling of split-ring resonators couplings in printed
circuits,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 8,
pp. 1605–1615, Aug. 2014.

[18] J. D. Baena et al., “Equivalent-circuit models for split-ring resonators
and complementary split-ring resonators coupled to planar transmis-
sion lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 4,
pp. 1451–1461, Apr. 2005.

[19] A. L. Borja, A. Belenguer, J. Cascon, H. Esteban, and V. E. Boria,
“Wideband passband transmission line based on metamaterial-inspired
CPW balanced cells,” IEEE Antennas Wireless Propag. Lett., vol. 10,
pp. 1421–1424, 2011.

[20] J. Naqui, M. Duran-Sindreu, and F. Martín, “Modeling split-ring res-
onator (SRR) and complementary split-ring resonator (CSRR) loaded
transmission lines exhibiting cross-polarization effects,” IEEE Antennas
Wireless Propag. Lett., vol. 12, pp. 178–181, 2013.

[21] J. Naqui, L. Su, J. Mata, and F. Martín, “Analysis of transmission
lines loaded with pairs of coupled resonant elements and applica-
tion to sensors,” J. Magn. Magn. Mater., vol. 383, pp. 144–151,
Jun. 2015.

[22] L. Su, J. Naqui, J. Mata-Contreras, and F. Martín, “Modeling metamater-
ial transmission lines loaded with pairs of coupled split-ring resonators,”
IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 68–71, 2015.

[23] R. Melik et al., “Nested metamaterials for wireless strain sensing,” IEEE
J. Sel. Topics Quantum Electron., vol. 16, no. 2, pp. 450–458, Mar. 2010.

[24] S. Naoui, L. Latrach, and A. Gharsallah, “Nested metamaterials antenna
for RFID traceability,” Microw. Opt. Technol. Lett., vol. 56, no. 7,
pp. 1622–1626, Jul. 2014.

[25] Y. Li, W. Li, and Q. Ye, “A compact UWB antenna with dual band-notch
characteristics using nested split ring resonator and stepped impedance
resonator,” Microw. Opt. Technol. Lett., vol. 55, no. 12, pp. 2827–2830,
Dec. 2013.

[26] V. T. Kilic, V. B. Erturk, and H. V. Demir, “Optical antenna of comb-
shaped split ring architecture for increased field localization in NIR and
MIR,” Opt. Exp., vol. 21, no. 24, pp. 29455–29461, Dec. 2013.

[27] Y. Liu, N. Xie, X. Tang, and F. Xiao, “A compact low-phase noise
oscillator with superior harmonic suppression characteristics based on
novel nested split-ring resonator (NSRR),” Int. J. Microw. Wireless
Technol., vol. 8, no. 8, pp. 1155–1161, Dec. 2016.

[28] Y. Liu, X. Tang, Z. X. Zhang, and X. L. Huang, “Novel nested split-
ring-resonator (SRR) for compact filter application,” Prog. Electromagn.
Res., vol. 136, pp. 765–773, 2013.

[29] X.-J. He, L. Qiu, Y. Wang, Z.-X. Geng, J.-M. Wang, and T.-L. Gui,
“A compact thin-film sensor based on nested split-ring-resonator (SRR)
metamaterials for microwave applications,” J. Infr., Millim., Terahertz
Waves, vol. 32, no. 7, pp. 902–913, Jul. 2011.

[30] B. Ozbey et al., “Wireless displacement sensing enabled by metamaterial
probes for remote structural health monitoring,” Sensors, vol. 14, no. 1,
pp. 1691–1704, Jan. 2014.

[31] B. Ozbey, H. V. Demir, O. Kurc, V. B. Erturk, and A. Altintas, “Wireless
measurement of elastic and plastic deformation by a metamaterial-based
sensor,” Sensors, vol. 14, no. 10, pp. 19609–19621, Oct. 2014.

[32] B. Ozbey, H. V. Demir, O. Kurc, V. B. Erturk, and A. Altintas, “Wireless
sensing in complex electromagnetic media: Construction materials and
structural monitoring,” IEEE Sensors J., vol. 15, no. 10, pp. 5545–5554,
Oct. 2015.

[33] B. Ozbey, V. B. Erturk, H. V. Demir, A. Altintas, and O. Kurc,
“A wireless passive sensing system for displacement/strain measurement
in reinforced concrete members,” Sensors, vol. 16, no. 4, p. 496,
Apr. 2016.

[34] B. C. Wadell, Transmission Line Design Handbook. Boston, MA, USA:
Artech House, May 1991.

[35] E. Chen and S. Y. Chou, “Characteristics of coplanar transmission
lines on multilayer substrates: Modeling and experiments,” IEEE Trans.
Microw. Theory Techn., vol. 45, no. 6, pp. 939–945, Jun. 1997.

[36] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems,
1st ed. New York, NY, USA: Wiley, Apr. 2001.

[37] F. E. Terman, Radio Engineers’ Handbook, 1st ed. New York, NY, USA:
McGraw-Hill, 1943.

[38] C. Hoer and C. Love, Exact Inductance Equations for Rectangular Con-
ductors With Applications to More Complicated Geometries. Boulder,
CO, USA: NBS, 1965.

[39] M. Kirschning, R. H. Jansen, and N. H. L. Koster, “Measurement
and computer-aided modeling of microstrip discontinuities by an
improved resonator method,” in IEEE MTT-S Int. Microw. Symp. Dig.,
May/Jun. 1983, pp. 495–497.

[40] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and
Slotlines, 2nd ed. Boston, MA, USA: Artech House, Feb. 1996.

[41] F. W. Grover, Inductance Calculations: Working Formulas and Tables.
North Chelmsford, MA, USA: Courier Corporation, 2004.

Burak Ozbey (M’16) received the B.S., M.S., and
Ph.D. degrees in electrical and electronics engi-
neering from Bilkent University, Ankara, Turkey,
in 2008, 2011, and 2016, respectively.

He is currently a Post-Doctoral Researcher with
the Electrical and Electronics Engineering Depart-
ment, Bilkent University. His current research inter-
ests include electromagnetic theory, microwave cir-
cuits, structural health monitoring, and the design
and testing of wireless RF sensors.

Dr. Ozbey was a recipient of the 2016 Leopold
B. Felsen Award for Excellence in Electromagnetics. He was selected as
a Fulbright Post-Doctoral Scholar and an URSI Young Scientist Awardee
in 2017.



OZBEY et al.: EQUIVALENT CIRCUIT MODEL FOR NSRRs 3743

Ayhan Altintas (SM’93) received the B.S.
and M.S. degrees from Middle East Technical
University (METU), Ankara, Turkey, in 1979 and
1981, respectively, and the Ph.D. degree from
The Ohio State University, Columbus, OH, USA,
in 1986.

From 1981 to 1987, he was with the
ElectroScience Laboratory, The Ohio State
University. He is currently a Professor of electrical
engineering with Bilkent University, Ankara.
He was a Research Fellow and a Guest Professor

with Australian National University, Canberra, ACT, Australia, the Tokyo
Institute of Technology, Tokyo, Japan, the Technical University of Munich,
Munich, Germany, and Concordia University, Montreal, QC, Canada. His
current research interests include high-frequency and numerical techniques
in electromagnetic scattering and diffraction, propagation modeling and
simulation, wireless sensing, and power system monitoring.

Dr. Altintas was the Chairman of the IEEE Turkey Section
from 1991 to 1993 and 1995 to 1997. He is a member of Sigma Xi
and Phi Kappa Phi. He is currently the President of the URSI Turkish
National Committee. He is a Fulbright Scholar, and an Alexander von
Humboldt Fellow. He was a recipient of the ElectroScience Laboratory
Outstanding Dissertation Award of 1986, the IEEE 1991 Outstanding Student
Branch Counselor Award, the 1991 Research Award of the Prof. M. N.
Parlar Foundation of METU, the Young Scientist Award of Scientific and
Technical Research Council of Turkey (Tubitak) in 1996, and the IEEE Third
Millennium Medal.

Hilmi Volkan Demir (SM’11) received the B.S.
degree in electrical engineering from Bilkent Uni-
versity, Ankara, Turkey, in 1998, and the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, USA, in 2000 and
2004, respectively.

He is a Fellow with the Singapore National
Research Foundation and a Full Professor with
Nanyang Technological University, Singapore. He is
also a Professor of electrical engineering and physics
with Bilkent University (his alma mater). He has

authored over 250 peer-reviewed research articles in major scientific journals
and delivered over 200 invited seminars, lectures, and colloquia. He holds over
30 patents, several of which have currently been used, owned, or licensed
by the industry. He has contributed to commercialization and licensing of
several new enabling technologies as well as establishing two successful
companies. His current research interests include the science of excitonics for
high-efficiency light generation and harvesting, nanocrystal optoelectronics,
implantable electronics, and wireless sensing.

Dr. Demir was a recipient of the Nanyang Award for Research Excellence,
the European Science Foundation European Young Investigator Award, and
the Outstanding Young Person in the World Award from the JCI Federation
of Young Leaders and Entrepreneurs.

Vakur B. Ertürk (M’00) received the B.S. degree
in electrical engineering from Middle East Technical
University, Ankara, Turkey, in 1993, and the M.S.
and Ph.D. degrees from The Ohio State University,
Columbus, OH, USA, in 1996 and 2000, respec-
tively.

He is currently a Professor with the Electrical
and Electronics Engineering Department, Bilkent
University, Ankara. His current research interests
include the analysis and design of conformal anten-
nas and arrays, wireless sensors for structural health

monitoring, numerical techniques, printed circuits, and scattering from and
propagation over large terrain profiles.

Dr. Ertürk was the Secretary/Treasurer of the IEEE Turkey Section and
the Turkey Chapter of the IEEE Antennas and Propagation, Microwave
Theory and Techniques, Electron Devices, and Electromagnetic Compatibility
Societies. He was a recipient of the 2005 URSI Young Scientist and the 2007
Turkish Academy of Sciences Distinguished Young Scientist Awards.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


