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ABSTRACT 

COLOR SCIENCE AND TECHNOLOGY OF                 

NOVEL NANOPHOSPHORS FOR HIGH-EFFICIENCY              

HIGH-QUALITY LEDs 

 

Talha Erdem 

M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Hilmi Volkan Demir 

August 2011 

 

 

Today almost one-fifth of the world‟s electrical energy is consumed for artificial 

lighting. To revolutionize general lighting to reduce its energy consumption, 

high-efficiency, high-quality light-emitting diodes (LEDs) are necessary. 

However, to achieve the targeted energy efficiency, present technologies have 

important drawbacks. For example, phosphor-based LEDs suffer from the 

emission tail of red phosphors towards longer wavelengths. This deep-red 

emission decreases substantially the luminous efficiency of optical radiation. 

Additionally, the emission spectrum of phosphor powders cannot be controlled 

properly for high-quality lighting, as this requires careful spectral tuning. At this 

point, new nanophosphors made of colloidal quantum dots and crosslinkable 

conjugated polymer nanoparticles have risen among the most promising 

alternative color convertors because they allow for an excellent capability of 

spectral tuning. In this thesis, we propose and present high-efficiency, high-

quality white LEDs using quantum dot nanophosphors that that exhibit luminous 

efficacy of optical radiation ≥380 lm/Wopt, color rendering index ≥90 and 

correlated color temperature ≤4000 K. We find that Stoke‟s shift causes a 

fundamental loss >15%, which limits the maximum feasible luminous efficiency 

to 326.6 lm/Welect. Considering a state-of-the-art blue LED (with 81.3% photon 

conversion efficiency), this corresponds to 265.5 lm/Welect. To achieve 100 and 



 iv 

200 lm/Welect, the layered quantum dot films are required to have respective 

quantum efficiencies of 39 and 79%. In addition, we report our numerical 

modeling and experimental demonstrations of the quantum dot integrated LEDs 

for the different vision regimes of human eye. Finally, we present LEDs based 

on the color tuning capability of conjugated polymer nanoparticles for the first 

time. Considering the outcomes of this thesis, we believe that our research 

efforts will help the development and industrialization of white light emitting 

diodes using nanophosphor components.  

 

Keywords: White light emitting diodes (white LED), color science, photometry, 

luminous efficacy, color rendering, color temperature, color tuning, spectral 

tuning. 
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ÖZET 

NANOFOSFORLARIN YÜKSEK VERİMLİLİK YÜKSEK 

KALİTE LED UYGULAMALARI İÇİN RENK BİLİMİ VE 

TEKNOLOJİSİ 

 

Talha Erdem 

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Hilmi Volkan Demir 

Ağustos 2011 

 

 

Günümüzde dünya enerji tüketiminin yaklaşık beşte biri yapay aydınlatma için 

kullanılmaktadır. Genel aydınlatma uygulamalarında bu enerji tüketimini 

düşürecek teknolojik devrimi hayata geçirebilmek için verimliliği ve kalitesi 

yüksek ışık yayan diyotların (LED) kullanımına geçilmesi bir zorunluluk haline 

gelmiştir. Ancak hedeflenen verimlilik seviyelerine ulaşabilmek için günümüz 

teknolojilerinin önemli zaafları vardır. Örneğin, fosfor tabanlı LED‟lerin en 

büyük sorunları arasında kırmızı fosforların uzun dalgaboylarına uzanan ışıma 

spektrumları yer almaktadır. Bu derin-kırmızı bölgedeki ışıma, optik ışımanın 

aydınlatma verimliliğini (LER) önemli düzeyde azaltmaktadır. Bunlara ek 

olarak, fosfor tozlarının ışıma spektrumlarının kontrol edilemeyişi dikkatli 

spektrum ayarlanabilirliğini gerektiren yüksek kaliteli aydınlatma uygulamaları 

için sorun teşkil etmektedir. Bu noktada, kolloid kuantum noktacıkları ve çapraz 

zincirlenebilir polimer nanoparçacıklar spektrum kontrolüne izin vermelerinden 

dolayı var olan renk dönüştürücü malzemelere alternatif olarak öne 

çıkmaktadırlar. Bu tezde kuantum noktacık nanofosforlar kullanarak yüksek 

verimlilikte ve kalitede beyaz LED‟leri teklif ediyor ve gösterimini yapıyoruz. 

Bu LED‟lerin optik ışımanın aydınlatma verimliliği değerleri 380 lm/Wopt‟den, 

renk dönüşüm indisleri ise 90‟dan daha yüksek değerlere ulaşabilmekte; benzer 

renk sıcaklığı ise 4000 K‟in altında yer almaktadır. Sadece Stock kaymasından 
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kaynaklanan temel kaybın en az %15 olduğunu ve elektriksel aydınlatma 

verimliliğinin (LE) en yüksek 326.6 lm/Welect olabileceğini yine bu tezde 

gösteriyoruz. Bu da güç dönüşüm verimliliği açısından günümüzün en iyi mavi 

LED‟leri kullanıldığında (%81.3), 265.5 lm/Welect seviyesinde bir elektriksel 

aydınlatma verimliğine denk gelmektedir. 100 ve 200 lm/Welect seviyesine 

ulaşmak için katmanlı kuantum noktacık filmlerinin verimliliklerinin sırasıyla 

%39 ve %79 olması gerekmektedir. Bu iç aydınlatma uygulamaları için yapılan 

çalışmaların yanında, diğer görme modları için de modelleme ve deneysel 

gösterimlerimiz yine bu tez içerisinde yer almaktadır. Son olarak, renk 

kontrolüne imkân veren konjüge edilmiş polimer nanoparçacıkların da ilk defa 

bir LED tasarımında kullanımını rapor ediyoruz. Bu tezdeki çalışmalarımızı göz 

önüne alarak, çalışmalarımızın nanofosfor temelli beyaz LED‟lerin geliştirilmesi 

ve endüstrileşmesinde önemli katkıları olacağını ummaktayız. 

 

Anahtar Kelimeler: Beyaz ışık yayan diyotlar (beyaz LED), renk bilimi, 

aydınlatma verimliliği, renk dönüşümü, renk sıcaklığı, renk kontrolü, spektrum 

kontrolü. 
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Introduction 
 

 

 

 

 

 

Today traditional fossil based energy production undesirably leads to dramatic 

increase in CO2 content of the atmosphere, which consequently adversely affects 

the climate [1]. To slow down this trend, scientists throughout the world 

continue working on energy efficiency in different fields of science [2,3]. One of 

those areas is the reduction and optimization of the energy consumed by the 

electrical devices, which can take a significant role in combatting climate 

change if targeted performance levels are realized.  

  

 Among various applications, lighting has an important place for potential 

energy saving as today ca. 20% of the global electrical energy consumption is 

used for the artificial lighting [4]. In the under-developed parts of the world, gas 

lamps are still used, which possess very low light quality and efficiency. As the 

regional economic power increases, the most widely used light sources become 

fluorescent lamps (and incandescent lamps in some places). However, these 

sources are not enough for high-efficiency.  

  

 Solid state lighting offers a huge potential in terms of energy efficiency. If 

the light emitting diodes (LED) achieve the targeted efficiencies, the energy 

consumed for lighting applications can be reduced by fifty percent [5]. 

According to a recent report published by the US Department of Energy, 133 

TWh of electrical energy can be saved annually in the USA in case that general 

illumination sources are replaced entirely with LEDs [6]. However, to realize 

such a large-scale change of light sources, they need to be designed specifically 
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for the aimed applications so that high-quality white light can be obtained in 

addition to high-efficiency, requiring a reasonable production cost and capacity. 

  

 For high-quality lighting, the capability of the light sources to render the real 

colors of the illuminated objects is an important criterion. In addition to 

increasing the life quality, especially for indoor lighting, this property of light 

sources can be crucial for street lighting applications since good color rendering 

increases the perception of color contrast under low ambient lighting conditions, 

which consequently might help to save human life against the risk of life-

threatening accidents. Moreover, a good light source should have a good 

spectral match between the emitted light spectrum and the human eye sensitivity 

function at the luminance levels of the specific applications. If this spectral 

match is not good enough, the emitted optical power by the device cannot be 

efficiently perceived by the human eye. Furthermore, a warm white shade is 

desirable especially for indoor lighting applications as it can otherwise affect the 

human biological clock.   

 

 Satisfying all of these high-quality lighting requirements simultaneously, in 

addition to high energy efficiency, requires careful spectral design and material 

choice. Conventional light sources such as incandescent and fluorescent lamps 

cannot fulfill these needs as their efficiencies are not high enough and/or tuning 

their spectra is not possible. Although power conversion efficiencies of white 

LEDs, in which phosphors are typically integrated as color convertors, are 

relatively good, their spectra cannot be controlled and tuned to the desired 

extent. As a result, they fail in satisfying the requirements for high-quality white 

light stated above. Spectral tuning can be achieved when individual LED chips 

emitting different color components are used together. However, this requires an 

individual green-emitting LED, which is low efficiency. Also, this multichip 

approach for spectrally tunable white light generation is far from being cost 

effective.    
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 One of the candidate materials, which can be used for color conversion 

instead of conventional phosphors on blue (or UV) LED chips and allows 

spectral tuning, is the colloidal semiconductor quantum dots (QDs). Since their 

emission properties can be fine-tuned by controlling their sizes and 

monodispersity, using multiple color components with individual narrow 

emission bands around strategic wavelengths enables to obtain a white light 

satisfying the requirements aforementioned. Another class of materials, whose 

emission spectra can also be tuned, is the conjugated polymer nanoparticles. By 

crosslinking and building a core-shell type of nanoparticle structure, one can 

tune the photoluminescence spectra of these particles. As a result, spectral 

requirements for some specific applications can be satisfied using these 

nanoparticles as color convertors on LED chips emitting at shorter wavelengths. 

 

 This thesis presents the results of the thesis research work for obtaining 

efficient, high-quality and application specific white LED designs using 

colloidal quantum dots and conjugated polymer nanoparticles. It is organized as 

follows: Chapter 1 provides a general introduction and overview to the problems 

addressed in our research. In Chapter 2, the basic background regarding color 

science and photometry is given, which is useful for evaluating the quality of the 

generated light in a quantitative basis. Chapter 3 covers the optical properties of 

the materials used in this thesis work, i.e., quantum dots and polymer 

nanoparticles. Chapter 4 is dedicated to the white light generation methods using 

LEDs. Our studies on quantum dot integrated white LEDs for indoor lighting 

applications are explained in Chapter 5. The performance of quantum dot 

integrated white LEDs for outdoor applications is discussed in Chapter 6. 

Chapter 7 summarizes our work on white light generation using conjugated 

polymer nanoparticles via crosslinking. Finally, in Chapter 8 we summarize our 

conclusions of this thesis.         
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Chapter 2 
 

 

Color Science and Photometry 

 

To evaluate the quality of white light sources, one needs to have quantitative 

measures so that light sources can be classified accordingly. For this purpose, 

basic information on color science and photometry is essential. In this chapter, we 

review these points starting from the structure of a human eye. Then we continue 

with discussing the color matching functions and color spaces. Following these, 

two important color rendering metrics, i.e., color rendering index and color 

quality scale, are explained. Subsequently, we move to the photometry and start 

with the eye sensitivity functions for different vision regimes and continue with 

the definitions of some basic photometric quantities. Then we explain luminous 

efficacy of optical radiation and luminous efficiency of the light sources. Finally 

we close this chapter with the description of scotopic-to-photopic ratio (S/P ratio) 

and mesopic luminance. 

2.1 The Structure of Human Eye  
 

 

 

 

The eye is the organ through which we see our environment. Therefore, 

understanding its structure and working is essential for the purposes of high-

quality light generation. It has an almost spherical shape with a diameter of ca. 

24 mm [7]. The cornea is the layer of the eye where the light rays first enter 

(Figure 2.1). It is a transparent structure and contains no blood vessels. In its 

front part, it exhibits an additional curvature, whose radius of curvature is about 

8 mm. Tears and mucus solutions help the eye to sustain its transparency. After 

cornea, the light rays pass through the so-called anterior chamber which is full 

of a transparent liquid known as aqueous humor controlling the pressure within 

the eyeball. As the interior pressure of the eye is greater than the atmospheric 
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pressure, the amount of this liquid is essential for protecting the shape of the 

eye. Following this liquid part, light rays come to the lens which is responsible 

for focusing the incoming rays on the retina. The position of the focus is 

controlled through the shape change of the lens by two muscles. These muscles 

pull or relax the lens when the eye focuses on a far or close object and the lens 

takes a flat or convex shape, respectively. After the lens, light rays travel within 

the vitreous body, which is filled by a jelly material, and fall on the retina. This 

part of the eye corresponds to the two-thirds of the volume of the eye.  

 

Figure 2.1 Structure of a human (right) eye. (1) cornea, (2) aqueous humor, (3) lens, 

(4)vitreous body, (5) retina, (6) choroid, (7) sclera, (8) optic nerves, (9) fovea, (10) optic 

disk, (11) front edge of retina, (12) ciliary muscle, (13) zonule fibers, (14) iris and (15) 

ocular conjunctiva [7]. 

 

The retina is the part of the eye where the most critical layers for vision are 

located and neurons and fibers are contained. According to Stell, the neurons 

constitute three main layers [8]. The first layer is the layer of photoreceptors; the 

second one is the layer of intermediate neurons. Finally, the third neural layer is 

the layer of ganglion cells. The light sensitive cells are called photoreceptors. 

There are two types of them: rods and cones. The retina is rich of rods, which 

are more sensitive to light compared to cones. Their sensitivity covers the whole 
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visible range without useful color differentiation; as a result, they cannot provide 

color information to the brain. On the other hand; cones have three types, each 

having a different wavelength range of sensitivity corresponding to blue, green 

and red colors [9]. As Figure 2.2 illustrates, the photoreceptors are named 

considering their shapes. Figure 2.3 shows the relative sensitivities of rods and 

red, green and blue photoreceptors with respect to optical wavelength [9].  

 

Figure 2.2 Rod and cone receptors in the eye [10]. 

 

Figure 2.3 Normalized spectral sensitivities of rods and cones (red, green and blue) [9]. 

 

In addition to their spectral sensitivities, the photoreceptor activity depends 

on the ambient lighting levels. At high light levels, cones are more active and 

they dominate the vision whereas rods saturate and do not have any significant 

contribution to the vision. The vision at this light level is called the photopic 

vision. On the other hand, cones are not sensitive enough at lower light levels 

while rods dominate the vision. This is why we cannot distinguish different 

colors in the dark. This vision regime is called scotopic. There is another vision 
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regime where rods and cones are both active and contribute to the vision 

simultaneously. This regime is called the mesopic vision whose limits and 

significance will be discussed in the further sections of this chapter.  

2.2 Color Matching Functions and Color Spaces 

 

 

To engineer light sources, one needs to define colors in a mathematical sense. 

However, color perception of every individual slightly varies; therefore, such a 

definition has to be made using a statistical approach. The International 

Commission for Illumination (Commission Internationale de l‟Eclairage, CIE) 

has used such an approach and published a standardized method for the 

definition of color [11]. CIE utilized three color matching functions: x, y and z, 

whose spectral distributions are given in Figure 2.4. 

 

Figure 2.4 Color matching functions as defined in CIE 1931 [11]. 

The method proposed by CIE makes use of these color matching functions 

and the chromaticity diagram. The tristimulus values, X, Y and Z, are given in 

Equations (2.1) – (2.3) for a spectral power distribution of s(λ). 
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( ) ( )X s x d  (2.1) 

( ) ( )Y s y d  (2.2) 

( ) ( )Z s z d  (2.3)  

The chromaticity coordinates are calculated as in Equations (2.4) – (2.7). The 

chromaticity diagram, which is created by using the mapping methodology 

described in Equations (2.1) – (2.6), is given in Figure 2.5. Since one of the 

three coordinates is dependent on the other two, a two dimensional color space 

is enough without having any information loss.  

X
x

X Y Z
 (2.4) 

Y
y

X Y Z
 (2.5) 

1
Z

z x y
X Y Z

 (2.6) 

 

Figure 2.5 CIE 1931 (x,y) chromaticity diagram [12]. 

Although CIE 1931 is the most widely used chromaticity diagram, it has 

some important weaknesses, which was later improved by defining new color 
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spaces. One of the important drawbacks of CIE 1931 is that the geometric 

difference between colors does not correspond to the same color differences. To 

fix this problem, CIE introduced new chromaticity diagrams in 1960 and 1976, 

which are called CIE 1960 and 1976 chromaticity diagrams, respectively. These 

diagrams are also called (u,v) and  (u',v') chromaticity diagrams [13,14]. CIE 

1976 chromaticity diagram is given in Figure 2.6.  

 

Figure 2.6 CIE 1976 chromaticity diagram [9]. 

Calculations of (u,v) and (u',v') chromaticity coordinates are given in 

Equations (2.7) – (2.9).  

4
'

15 3

X
u u

X Y Z
 (2.7) 

6

15 3

Y
v

X Y Z
 (2.8) 

9
'

15 3

Y
v

X Y Z
 (2.9) 

Another uniform color space is the CIE 1976 (L
*
a

*
b

*
) chromaticity diagram 

[14]. The corresponding equations required for color mapping are given by 

Equations (2.10) – (2.12) [7]. 
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* 1/3116( / ) 16nL Y Y  (2.10) 

1/3 1/3

* 500
n n

X Y
a

X Y
 (2.11) 

1/3 1/3

* 200
n n

X Z
b

X Z
 (2.12) 

These formulas are valid as long as X/Xn, Y/Yn and Z/Zn are larger than 0.01. 

Otherwise the calculations should be carried out using Equations (2.13) – (2.17). 

* 903.3m

n

Y
L

Y
 (2.13) 

* 500m

n n

X Y
a f f

X Y
 (2.14) 

* 200m

n n

X Z
b f f

X Z
 (2.15) 

where 

1/3

0.008856
n n n

K K K
f for

K K K
 (2.16) 

16
7.787 0.008856

116n n n

K K K
f for

K K K
 (2.17) 

for K is X, Y or Z. Xn, Yn and Zn are called the nominally white object color 

stimulus, and they are calculated by making use of the spectral power 

distributions of CIE standard illuminants like A and D65 and Equations (2.1) – 

(2.3). 
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2.3 Color Rendering Index and Color Quality 

Scale 
 

 

 

A good white light source has to render the real colors of the objects that it 

illuminates. It is very critical especially for the indoor lighting applications; 

however, for outdoor applications, it also helps to increase the safety because 

good color rendering provides better color contrast and consequently, better 

vision under low ambient lighting.  

 

The color rendering capability of the illuminants is calculated by several 

methods. In this thesis, we explain the most widely used two metrics i.e.: the 

color rendering index (CRI) and the color quality scale (CQS), which is 

developed as a similar approach to CRI. 

 

The color rendering index (CRI) is developed by CIE in 1971 [15] and 

updated to its current form in 1995 [16]. It basically tests the color rendering 

capability of the test light source with respect to a reference light source, which 

is accepted to possess perfect color rendition. CRI makes use of fourteen test 

color samples suggested by CIE. Based on the reflection of the test light source 

and the reference light source from these samples, color differences are 

calculated for each test sample. Finally, from these color differences a color 

rendering index value specific for each sample is obtained. The first eight of 

these samples are used for determining the general color rendering index. The 

remaining six define the special color rendering indices. The best color rendition 

is given as 100, whereas the worst rendition is denoted by a CRI of -100.  

 

Before explaining the calculation of CRI, it is helpful to clarify the notation. 

The subscript “ref” stands for the reference light source, which is in general a 

blackbody radiator. The subscript “ref,i” denotes the reflected color from the i
th
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test sample illuminated by the reference light source. The subscript “test” 

indicates for the light source under the test whereas “test,i” is the reflection of 

the test light source from the i
th

 test samples. 

    

The calculation starts with the transformation of (u,v) coordinates to (c,d) 

coordinates given by Equations (2.18) and (2.19). 

(4 10 ) /c u v v  (2.18) 

(1.708 0.404 1.481 ) /d v u v  (2.19) 

Then (utest,i
**

,vtest,i
**

) are calculated by Equations (2.20) and (2.21). 

, ,

**

,

, ,

10.872 0.404 4

16.518 1.481

ref ref

test i test i

test test
test i

ref ref

test i test i

test test

c d
c d

c d
u

c d
c d

c d

 (2.20) 

 

**

,

, ,

5.520

16.518 1.481
test i

ref ref

test i test i

test test

v
c d

c d
c d

(2.21) 

The calculation of (utest
**

,vtest
**

) is given in Equations (2.22) and (2.23). 

**
10.872 0.404 4

16.518 1.481

ref ref

test

ref ref

c d
u

c d
 (2.22) 

** 5.520

16.518 1.481
test

ref ref

v
c d

 (2.23) 

For the calculation of color shift, we need ΔL
**

, Δu
**

 and Δv
**

 (Equations 

(2.24) – (2.27)). 

1/3 1/3** ** **

, , , ,25 17 25 17ref i test i ref i test iL Y Y L L (2.24) 

** ** ** ** **

, , , ,13 ( ) 13 ( )ref i ref i ref test i test i testu L u u L u u (2.25) 

** ** ** ** **

, , , ,13 ( ) 13 ( )ref i ref i ref test i test i testv L v v L v v (2.26) 

Following these, the color difference is calculated as in Equation (2.27). 

** ** 2 ** 2 ** 2( ) ( ) ( )iE L u v  (2.27) 
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 After obtaining the color difference, individual color rendering indices of 

each test color sample can be obtained using Equation (2.28). 

*100 4.6i iCRI E  (2.28) 

Finally, the general color rendering index is obtained by taking the average of 

the first eight test color samples (Equation 2.29). 

8

1

1

8
i

i

CRI CRI  (2.29) 

 Although CRI is still the most frequently used metric for color rendition, it 

suffers from some weaknesses that need to be overcome [17]. One of these 

problems is the uniform color space used in CRI, which is not recommended by 

CIE anymore. Another important issue regarding CRI is that it assumes perfect 

color rendering of blackbody radiators and reference sources even at very low 

and high correlated color temperatures (CCT, which will be explained in the 

next section). However, this is not always correct. Furthermore, CRI does not 

use any test color sample, which is highly saturated. As a result, it does not 

provide correct color rendering information of saturated colors although the 

results are accurate for samples having desaturated colors.  On top of these, CRI 

makes use of the arithmetic mean of color rendering indices of each test color 

sample, which means that a poor rendering for one of the samples can be 

compensated.  

  

Considering these problems of CRI, Davis and Ohno have developed a new 

metric for color rendition evaluation of light sources called color quality scale 

(CQS) [17]. It uses the same reference light sources as in CRI, but the test color 

samples are changed. Instead of eight unsaturated test color samples, CQS 

employs fifteen commercially available Munsell samples, all having highly 

saturated colors. Since a light source rendering saturated colors well succeeds a 

good rendition of unsaturated colors, this metric provides more healthy 

information of color rendering. This is especially useful for light emitting 

diodes, which are fabricated using narrow-band emitting material systems and 

structures. As it is done in the calculation of CRI, a chromatic adaptation 
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transform is necessary in CQS. However, CQS utilizes a modern transform, 

CMCCAT2000 [18]. Another important improvement of CQS compared to CRI 

is the choice of uniform color space. In CQS, CIE L
*
a

*
b

*
 is preferred. The color 

difference between the reflections of the test samples illuminated by the 

reference and test light source is expressed in Equation (2.30).  

* * 2 * 2 * 2

, ( ) ( ) ( )ab i i i iE L a b  (2.30) 

where 

* * *

, ,i test i ref iL L L  (2.31) 

* * *

, ,i test i ref ia a a  (2.32) 

* * *

, ,i test i ref ib b b  (2.33) 

The chroma difference is given by Equation (2.34). 

* * *

, , , , ,ab i ab test i ab ref iC C C  (2.34) 

where  

* * 2 * 2

, , ,( ) ( )ref i ref i ref iC a b  (2.35) 

* * 2 * 2

, , ,( ) ( )test i test i test iC a b  (2.36) 

In addition to the color difference in Equation (2.30), a saturation factor is 

introduced in CQS so that the effect of increasing the object chroma under the 

test illuminant with respect to reference source is neutralized. The corrected 

color difference then becomes as given in Equation (2.37). 

* *

, ,
*

, , * 2 * 2

, ,

, 0

( ) ( ) ,

ab i ab i

ab sat i

ab i ab i

E if C
E

E C otherwise
(2.37) 

One of the most important improvements of CQS compared to CRI is in the 

calculation of the final color rendering performance. As opposed to CRI, CQS 

takes root-mean-squares (rms) of individual corrected color differences, so that 

poor rendition of any test color sample has a more significant effect on the final 

value. The calculation of rms-color difference and rms-averaged CQS is given in 

Equations (2.38) and (2.39). 
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15
* 2

, ,

1

1
( )

15
rms ab sat i

i

E E  (2.38) 

, 100 3.1a rms rmsQ E  (2.39) 

An additional difference of CQS compared to CRI is its scale. Since having a 

CRI less than zero, which denotes a poor color rendition, can be misleading, 

CQS is brought to the scale of 0–100. This scaling is undertaken using Equation 

(2.40). 

,

0 100 10ln{exp( ) 1}
10

a rmsQ
CQS  (2.40) 

Finally, the correction for low CCTs is introduced (in Equations (2.41) and 

(2.42)) and the final value of CQS is determined using Equation (2.43).  

For CCT < 3500 K, 

3 11 2 7(9.2672 10 ) (8.3959 10 ) (0.00255) 1.612CCTM CCT CCT CCT (2.41) 

For CCT ≥ 3500 K,  

            1CCTM    (2.42) 

0 100CCTCQS M CQS  (2.43) 

 

2.4 Correlated Color Temperature 
 

 

 

The correlated color temperature (CCT) is one of the most widely used metrics 

for characterizing white light sources. Before defining CCT, it is more 

instructive first to explain the color temperature. If the chromaticity coordinates 

of the white light source fall onto the Planckian locus (chromaticity coordinates 

of blackbody radiators at different temperatures), then the temperature of the 

blackbody radiator having the same chromaticity points as the white light source 

is called the color temperature. In case that the chromaticity coordinates of the 

light source under test is not on the Planckian locus, then the temperature of the 

blackbody radiator, whose (u',v') chromaticity coordinates are closest to the light 
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source under the test source, is called the correlated color temperature. The 

Planckian locus is given in Figure 2.7. 

 

 

Figure 2.7 Planckian locus on CIE 1976 (u',v') chromaticity diagram [9]. 

 

White light sources having high CCTs have a bluish shade, whereas a reddish 

shade corresponds to lower CCTs. Therefore, cold (or cool) white light has a 

higher CCT and warm white sources have lower CCTs, which might look 

confusing at the first sight since the use of the terminology is opposite to the 

common usage of temperature. An incandescent light bulb has a CCT below 

3000 K, the fluorescent tubes have varying CCTs between 3000 to 6500 K 

whereas the CCT of the sun is close to 6000 K [9]. For indoor lighting, warm 

white light sources are preferred as a cool white has a high bluish content which 

might cause shifts in the biological clock [19]. 
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2.5 Eye Sensitivity Functions  
 

 

While evaluating the quality of the white light sources, it is of significant 

importance that the spectra of the illuminants match the sensitivity of the human 

eye as well as possible. A light source would that radiates at wavelengths not 

sensible by the eye cannot contribute to the vision even if it has a high power 

conversion efficiency or high optical power.  

 

Since the photoreceptors contributing to the vision are different at different 

ambient light levels, the sensitivity of the eye changes accordingly. Rod 

photoreceptors are responsible for the scotopic vision, which is the dark-adapted 

vision [9]. Its sensitivity takes its maximum at 507 nm. On the other hand, cones 

provide the photon adapted vision and start to work above some luminance 

levels. The vision at these light levels is called the photopic vision (photon-

adapted vision). The sensitivity of the cones makes its peak at 555 nm. The 

corresponding eye sensitivity functions for scotopic [20] and photopic [11] light 

levels are given in Figure 2.8.  

 

Figure 2.8 The eye sensitivity function at different vision regimes: photopic (red), mesopic 

(green, at a luminance of 0.5 cd/m
2
 ) and scotopic eye sensitivity functions.  
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Before explaining the mesopic vision levels, it is necessary to define the 

luminance, which we will explain again in the next section. The luminance of a 

light source is calculated as in Equation (2.44). 

683 ( ) ( )
opt

lm
L P V d

W
 (2.44) 

where P(λ) and V(λ) are the spectral radiance (power per unit area per solid 

angle) and the photopic eye sensitivity function, respectively. 

 

In the mesopic levels both photoreceptors are active. As a result, the 

sensitivity of the eye changes according to the level of contribution of rods and 

cones. These changes are well known for a long time ago, however, the exact 

limits of photopic and scotopic regimes and the eye sensitivity function at 

mesopic levels have been a subject of discussion. For example, Osram Sylvania 

defines the luminance limits of photopic and scotopic vision as 0.003 and 3 

cd/m
2
, respectively [21]. According to Johnson [22] and LeGrand [23] photopic 

vision starts at the luminance of 5 cd/m
2
, whereas Kokoschka pushes this limit 

further to 10 cd/m
2
 [24]. As IESNA (Illuminating Engineering Society of North 

America) puts these limits to around 0.01 cd/m
2
 and 3 cd/m

2
 [25], CIE 1978 

claims the scotopic vision to start below 0.001 cd/ m
2
 [26]. According to unified 

system of photometry (USP) developed by Rea, photopic vision starts above 0.6 

cd/m
2
 and scotopic vision starts below 0.001 cd/m

2 
[27]. Another recent system 

for mesopic photometry is developed by MOVE consortium; according to this 

work, mesopic vision lies between the luminances of 0.01 cd/m
2
 and 10 cd/m

2
 

[28,29]. In 2010, CIE recommended a system of photometry (CIE 191:2010), 

which is based on USP and MOVE systems [30]. According to this most recent 

report, mesopic regime is defined between the luminance levels of 0.005 cd/m
2
 

and 5 cd/m
2
. In this report, the eye sensitivity function is also defined and 

calculated as given in Equations (2.45) and (2.46).  

( ) ( ) ( ) (1 ) '( )mesM m V mV m V  (2.45) 

0683 / ( ) ( ) ( )mes mes mesL V V P d  (2.46) 
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where V( ), V'( ) and Vmes( ) are the photopic, scotopic, and mesopic eye 

sensitivity functions, respectively; P( ) is the spectral radiance, M(m) is a 

normalization constant such that Vmes( ) has the maximum value of 1, 0 is 555 

nm, Lmes is the mesopic luminance, and m is a coefficient depending on visual 

adaptation conditions. Further details on the calculation of mesopic eye 

sensitivity function can be found in Ref. 30. As an exemplary case, the eye 

sensitivity function at a luminance of 0.5 cd/m
2
 is given in Figure 2.8.  

 

2.6 Basic Radiometric and Photometric Measures  
 

 

The light sources are also sources of electromagnetic radiation. From this 

perspective, their performances can be evaluated with respect to their 

electromagnetic properties characterized by the radiometric measures. In 

addition to this, the light sources, especially white light sources, are subject to 

the sensitivity of the human eye. Therefore, these sources have to be evaluated 

by taking the response of the human eye into account. Scaling the radiometric 

units with the eye sensitivity function remedies this problem and introduces the 

photometric quantities. 

 

One of the most frequently used radiometric quantities is the optical power. 

In the lighting community, radiant flux is alternatively used instead of optical 

power [9]. The photometric version of the optical power is the luminous flux 

and calculated using spectral radiant flux Pϕ(λ) and eye sensitivity function V(λ) 

as in Equation (2.47). The unit of luminous flux is lumen (lm).  

683 ( ) ( )
opt

lm
P V d

W
 (2.47) 

Given the spectral radiant intensity PLI(λ), i.e., the optical power per unit 

solid angle at varying wavelengths, the luminous intensity becomes as in 

Equation (2.48). The luminous intensity is given in units of lm/sr or equivalently 

in candelas (cd). 
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683 ( ) ( )LI

opt

lm
LI P V d

W
 (2.48) 

 The irradiance is the optical power per unit area, its correspondent in 

photometry is the illuminance which has the units of lm/m
2
. Given the spectral 

radiance (in units of Woptm
-2

nm
-1

) PIl(λ), the luminance is expressed as in 

Equation (2.49). Its unit is lm/m
2
, or equivalently lux. 

683 ( ) ( )Il

opt

lm
Il P V d

W
 (2.49) 

 

 Finally, the radiance is the radiometric quantity denoting the optical power 

per solid angle per unit area and has the units of Woptsr
-1

m
-2

. Given the spectral 

radiance PL(λ), the luminance is calculated using Equation (2.50). Its unit is 

lm/(m
2
sr), or equivalently cd/m

2
. 

683 ( ) ( )L

opt

lm
L P V d

W
 (2.50) 

At this point, it is worth mentioning that the photometric quantities defined in 

this section are based on the photopic eye sensitivity function. However, 

photometric measures for mesopic and scotopic eye sensitivity functions may 

also be defined in the same way, but in those cases mentioning the type of the 

eye sensitivity function is necessary to avoid confusions. Also, one has to pay 

attention to equate the value of the corresponding eye sensitivity function to 1 at 

555 nm. As a result, the factor 683 lm/Wopt changes with respect to the vision 

regime. For scotopic regime, this factor takes the value of 1699 lm/Wopt, 

whereas for mesopic vision regime this value varies as the photopic luminance 

changes.  

 

To evaluate the quality of the white light sources, there are two equally 

important efficiency measures that are strongly correlated to the sensitivity of 

the eye. One of them denotes the efficiency of the radiated light for human 

perception per radiated optical power. It is called the luminous efficacy of 

optical radiation (LER). Given the spectral power distribution of P(λ) and 
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photopic eye sensitivity function V(λ), LER is calculated using Equation (2.51) 

and has the units of lm/Wopt. 

683 ( ) ( )

( )

opt

lm
P V d

W
LER

P d
 (2.51) 

 The second important efficiency measure calculates the efficiency of the 

radiated light as perceived by the human eye per supplied electrical power, Pelect. 

This performance criterion of light sources is called the luminous efficiency 

(LE). It is expressed in units of lm/Welect and calculated as given in Equation 

(2.52).   
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At this point, it is instructive to mention that LE is related to LER through the 

power conversion efficiency (PCE). The relation is given by Equation (2.53). 
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   Another performance criterion is the ratio of scotopic-to-photopic 

efficiencies (S/P). If this ratio is high, then the vision in the scotopic and 

mesopic regimes is stronger. In addition, the brightness perception is higher in 

the case that S/P is high [31]. This quantity is basically the ratio of luminous 

fluxes in scotopic and photopic vision regimes (Equation (2.54)). 
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Chapter 3 
 

 

Materials: Colloidal Quantum Dots 

and Polymer Nanoparticles 
 

 

 

 

 

 

To satisfy the photometric and colorimetric high performance for general lighting 

applications, a careful spectral design of the source is necessary. For this purpose, 

materials enabling spectral tuning are required. Within the framework of this 

thesis we concentrate on two different materials. These are the colloidal 

semiconductor quantum dots (QDs) and conjugated polymer nanoparticles 

(CNPs). For QDs, spectral tuning can be achieved by controlling the size and 

size-dispersity of QDs together with the choice of QD combinations used in the 

color conversion film. On the other hand, the spectra generated using CNPs can 

be tuned via crosslinking the nanoparticles under ultraviolet (UV) illumination. In 

this chapter, we review material properties of these color convertors. The first 

section is devoted to colloidal quantum dots while the second one covers the 

conjugated polymer nanoparticles.  

3.1 Colloidal Quantum Dots 
 

 

 

In recent decades, optoelectronic devices, which are based on the semiconductor 

materials, have already revolutionized our lifestyles. As new studies concentrate 

on manipulations of the materials at the nanometer scale, new structures 

employing quantum mechanical effects start to be developed. Colloidal 

semiconductor QDs are one of these structures.  

 

Since the bandgap of these QDs can be tuned within or near the visible 

spectral range, semiconductor QDs have important place in photonics. 
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Additionally, the optical characteristics of these materials are dependent on their 

size. Therefore, controlling their size allows for the tuning of their optical 

properties. As a result, new type of lasers, light emitting diodes, solar cells, and 

other new optoelectronic devices can be developed.  

 

3.1.1 Physical Picture of Quantum Dots 
 

 

As the size of the materials gets smaller and smaller, the material properties 

cannot be explained by classical mechanics; instead, the governing mechanisms 

rely on the principles of quantum physics. For the semiconductor QDs, the same 

physical realities apply. In a QD, electrons and holes are confined in three 

dimensions, typically within a range of 2-10 nm [32]. This distance is also the 

typical extension of electrons and holes in a semiconductor material.  

 

The quantum-confinement effects are size-dependent. To create the 

confinement, the QDs are surrounded by a structure whose energy bandgap is 

higher. Such potential barrier structures can be obtained by using different 

architectures. One of the most interesting styles of QDs is the colloidal ones, 

which are prepared via wet chemical techniques (Figure 3.1(a)) [33]. The 

potential barrier is created by the surrounding medium, which in general 

constitutes of the organic molecules called the ligands. The quantum confinement 

effects, which depend on the size of the QD, are controlled with the adjustment of 

temperature, growth time and reactants. Another common method for the creation 

of epitaxial QDs, which are different than the colloidal quantum dots used in this 

thesis, is the usage of epitaxial growth techniques. In this method, the island of an 

energetically small material is surrounded by a matrix with a wider energy 

bandgap. As an example for this kind of a structure is shown in Figure 3.1(b). 

 

In the bulk material case, the Bohr radius of the excitons becomes in the order 

of a few nanometers for II-VI semiconductors [34]. As the size of the particle 
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gets closer to the Bohr radius, the wavefunctions start to get confined tightly 

within the QDs. 

 

Figure 3.1 Semiconductor QDs: (a) colloidal semiconductor CdTe QDs in dispersion and 

(b) epitaxially grown InAs QDs within a GaAs matrix which has a larger bandgap [32].  

 

To understand the quantum mechanical phenomena within QDs, the easiest 

way is to start with the Schrödinger Equation (Equation (3.1)). 

2 ( )
2

V r E
m


 (3.1) 

For the case of spherically symmetric potential, the solution of the 

Schrödinger Equation can be written as Equation (3.2). 

, ,( , , ) ( ) ( , )n l l mr R r Y  (3.2) 

where R(r) and Y(θ,ϕ) are radial and angular wavefunctions, respectively. n 

stands for the principal quantum number whereas l and m are the orbital and 

angular momentum numbers, respectively.  

 

In the case of infinite potential well, energy eigenvalues are given by 

Equation (3.3) [35]: 
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where a is the width of the potential well described by Equation (3.4). 
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In Equation (3.3), χnl stands for the roots of the Bessel function. However, 

these solutions represent the case of a free electron with mass m. To have a 

better physical picture of QDs, the presence of electrons and holes has to be 

taken into account. These effects are modeled by Brus [36], and Franceschetti 

and Zunger [37]. According to these models, the expression of optical gap 

(En,l
opt

) is given by Equation (3.5) [33].  In this equation, Eg stands for the 

bandgap, r is the radius of the quantum dot, me
*
 and mh

*
 are the effective 

electron and hole masses, respectively. χnl,e and χnl,h denote the roots of the 

spherical Bessel functions having the quantum numbers of n and l. Finally, e 

stands for the electron charge whereas εin is the static dielectric constant inside 

the QD. Note that Equation (3.5) takes into account the Coulomb interaction 

between electrons and holes.        
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Although this equation does not give the optical transition energies of QDs 

accurately, it still provides the intuitive information regarding its emission 

properties. Further information can also be found in Ref. 35-37.  

 

3.1.2 Synthesis of Quantum Dots 
 

 

The synthesis of colloidal QDs are carried out basically in two different types of 

solutions. These are non-polar organic solutions and water (polar). In this part of 

the thesis, both of these approaches will be reviewed.  

 

The synthesis of QDs in organic solvents basically involves the 

decomposition of molecular precursors [38]. In this approach, the precursors are 

injected into a hot solvent. As a result, atomic species, which will build up the 

quantum dot, are freed in a very short time. This leads to the oversaturation of 

the monomers required for the QD growth. Therefore, the growth of QDs is 

highly probable in such a medium. The temperature and the composition of the 
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solvent are two of the most effective parameters for the growth and the shape of 

the QDs [39,40]. For example, CdTe QDs in general constitute of a hexagonal 

wurtzite phase when synthesized in organic solvents [41]. However, by 

controlling the reaction conditions one can obtain structures in the cubic zinc 

blend phase [42]. The temperature of the solvent is important because it enables 

the decomposition into monomers within the solution and triggers the growth of 

QDs. In addition of the temperature, the solvent choice is also of great 

importance. In general, the solvent has two main functions [38]: First of all, the 

solvent disolves and disperses the QDs and the reactants taking part in the 

growth process. Second, the reaction speed is controlled by the solvent. In order 

to control the growth process, solvent molecules have to bind and unbind 

dynamically on the surface of the growing crystalline structure. Once a molecule 

leaves the surface of the QD, new atomic species, i.e., monomers, can bind to 

the crystal and the growth of the crystal starts. Because of these functions, the 

organic molecules binding on the surface of QDs are also called “surfactants” or 

“surface ligands”. As another function of the surfactants, it should be mentioned 

that they prevent QDs to get agglomerated by providing repulsion between QDs 

[43]. In general, a surfactant has a non-polar domain, often a long alkyl chain, 

and a polar head group. The shape of the non-polar group and the binding 

strength of the polar group are effective in the crystal growth. The non-polar tail 

is responsible for the diffusion properties whereas the polar domain determines 

the binding efficiency. Starting with the work of Murray et al. [41], tri-n-

octylphosphine oxide (TOPO) and tri-n-octylphosphine (TOP) are commonly 

used surfactants. In addition different amines and carboxylic acids can be 

incorporated as surface ligands [44-46].  

 

In the synthesis at least one of the species constituting QDs should be in 

liquid phase. Using a precursor, the growth can be started by quick injection. As 

a result, a fast nucleation occurs at high temperatures. For the growth of II-VI 

colloidal QDs, the elemental group II atoms are introduced in the mixture of 

TOP or tri-n-butylphosphine (TBP). When this mixture is heated at high 
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temperatures (around 300 °C), calcogen ions (for example Cd-ions) start to bind 

to the surfactant that are either phosphonic acids like dodecyl-, tetradecyl-, or 

octadecyl-phosphonic acids [44,47,48] or oleic acid [47,49]. The occurrence of 

this reaction is realized upon the observation of a steam and color change in the 

solution. After the injection of the group VI precursor, the formation of QDs 

starts to take place. The reaction is very fast in the beginning, but it slows down 

later over time. The nucleation and growth occurs after rapid injection of the 

solvents by increasing the precursor concentration above the nucleation 

threshold [43]. As a result, obtaining very small QDs emitting at shorter 

wavelengths is difficult. Obtaining larger QDs, which emit at longer 

wavelengths, requires a longer time. Some of the mostly synthesized QDs are 

CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe and HgTe [43]. As an example of the 

synthesis procedure, the synthesis of CdSe QDs are given below based on the 

work of Yu et al. [50].  

 

The required chemicals for the synthesis are oleic acid (OA:  

CH3(CH2)7CH=CH(CH2)7COOH); tri-n-octylphosphine oxide (TOPO: 

[CH3(CH2)7]3PO); tri-n-octylphosphine (TOP: [CH3(CH2)7]3P); hexadecylamine 

(HDA: CH3(CH2)15NH2); octadecene (ODE: C18H36); selenium powder (Se); 

cadmium oxide (CdO); toluene (C6H5CH3); methanol (MeOH: CH3OH); acetone 

(OC(CH3)2);  and chloroform (HCCl3). 

 

The Cd-precursor is prepared as follows: In a flask, CdO is dissolved in OA 

and ODE, and is mixed well. The mixture is heated under vacuum up to 100 °C 

for 15-20 minutes for the sake of purification. Then, the temperature is increased 

to 300 °C under inert atmosphere until a transparent, yellowish and viscous 

solution is formed. After this, the mixture can be cooled down to room 

temperature and stored in an air tight bottle. The Se-precursor is prepared as 

follows: 1 M solution of selenium powder is prepared in trioctylphosphine 

(TOP). For dissolving the Se-powder in TOP, constant stirring and heating to a 
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temperature of ca. 200 °C are required. Later, the injection mixture is prepared 

by mixing the required amounts of Se-stock solution, TOP and ODE.  

 

The synthesis procedure is as follows: In a small three-neck flask, the mixture 

of TOPO, HDA, ODE and Cd-stock solution are prepared. The flask is 

evacuated while increasing the temperature up to 100 °C, again for the 

purification purposes. Subsequently the temperature is raised to 300°C under Ar 

flow to obtain clear colorless solution. At this point, the Se injection mixture is 

introduced into the reaction. QDs start to grow with time; the desired emission 

wavelength (equivalently the desired size of QDs) can be controlled by setting 

the reaction time. To stop the reaction in a short time, toluene is injected and the 

flask is cooled down in a water bath. The synthesis of CdSe QDs is finished. 

Figure 3.2 presents an exemplary setup in our lab and Figure 3.3 shows the 

synthesized CdSe QDs.  

 

Figure 3.2 Synthesis setup of CdSe quantum dots. 
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Figure 3.3 CdSe quantum dots synthesized in Demir Lab at UNAM. 

Another important class of these materials is the core/shell QDs. Covering 

the core QD with a material having a larger bandgap allows for a better control 

of the optical properties of the QDs, protection against photo-oxidation, 

obtaining higher photoluminescence quantum efficiencies, and tuning of the 

emission within a wider range of wavelengths; in addition, the control of the 

band alignment is possible via the selection of the shell material [43]. As a 

result, type I and type II QDs can be synthesized. In type I QDs, the electrons 

and holes are both confined in the core, whereas in type II QDs electrons and 

holes are confined in different parts of the QD, one in the core and the other in 

the shell. The most common core/shell QDs are CdSe/CdS, CdSe/CdS/ZnS, 

PbSe/PbS, CdTe/CdSe, and CdSe/ZnTe. The first three of these QDs are of type 

I and the remaining two have a type II band alignment.  

 

The synthesis of QDs in water has a significant importance since it is the 

natural medium where all the living organisms‟ habitat is located and the 

chemical reactions of the living species take place. Therefore, especially for the 

biological applications, it is required to obtain QDs which are dispersed in water 

[51]. 

  

Since the synthesis environment is water, the reaction temperature in this 

type of QDs is limited with the boiling temperature of water, 100 °C. This 

relatively low temperature makes this type of synthesis safer and easier to 

implement. One of the most common QDs synthesized in the aqueous medium 
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is CdTe [51]. Similar to the organic synthesis, surfactants are also very crucial 

for this type of synthesis. These surfactants serve as stabilizers. As stabilizers, 

thiols with a short chain (up to 4 carbon units) with several functional groups 

(amino, carboxylic, hydroxylic, etc.) are used. Most popular stabilizers are 

thioglycolic (or mercaptoacetic) acid (TGA), mercaptopropionic acid (MPA) 

and 2-mercaptoethylamine (or cysteamine). TGA and MPA allow for stable 

(typically for years) negatively charged aqueous solutions of CdTe QDs due to 

the presence of surface carboxylic groups [51]. Although cysteamine stabilized 

QDs are less stable, positive surface charge in a neutral or acidic medium is the 

reason of interest in them. 

 

The pH value of the synthesis medium has very significant effects on the 

quality of the synthesis. Optimum pH depends on the choice of stabilizer. For 

cysteamine, this value should be between 5.6 and 6.0; for TGA, the 

recommended value is 11.2-11.8 [52]. As an exemplary synthesis of QDs in 

polar media, one of the methods for CdTe is given below according to Ref. 52: 

 

The required chemicals for the synthesis are aluminum telluride lumps 

(Al2Te3); cadmium perchlorate hexahydrate (Cd(ClO4)2
.
6H2O); thioglycolic acid 

(TGA: (SH)CH2COOH); milli-Q (MQ) water; sodium hydroxide (NaOH); 

sulfuric acid (H2SO4); iso-propanol (C3H7OH).  

 

The synthesis procedure is as follows: In a round bottom 3-neck reaction 

flask, required amounts of Cd(ClO4)2
.
6H2O and MQ water are put and stirred. 

After observing all of the Cd-source is dissolved, TGA is added to the mixture. 

At this step, the color of the solution becomes milky. Then the pH of the 

solution is set to 11.8 by adding NaOH solution. In a separate small three-neck 

flask, Al2Te3 is put. Also, in another bottle 0.5 M H2SO4 solution is prepared. 

After connecting the bottle containing Te-source to the big flask, the system is 

flashed with Ar to remove oxygen dissolved in water to keep the Te-source from 

oxidation. At the same time, bottle of H2SO4 is bubbled with Ar. Then, 10-12 
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mL of H2SO4 is taken with a syringe and it is injected on to the Te-source. This 

will create H2Te gas, which will be carried to the flask containing the Cd-source 

with the help of Ar flow. The color of the solution turns into pinkish-red color at 

this step. Then the mixture is heated until it boils. Boling of the solution 

corresponds to the formation of the QDs. As the time passes, the size of the 

synthesized QDs becomes larger leading to a shift in the photoluminescence 

peak towards longer wavelengths. Figure 3.4 shows an exemplary setup of water 

soluble CdTe QD synthesis. Both type of the QDs described here can be 

synthesized in our lab at UNAM.   

 

Figure 3.4 Synthesis setup of CdTe quantum dots. 

 

3.1.2 Optical Properties of Quantum Dots 
 

 

The optical properties of the quantum dots change dramatically by changing 

their sizes as a result of quantum confinement effect. The emission wavelength 

shifts to longer wavelengths as the size of the QD increases because the 

electrons and holes are confined within a larger volume and the ground state 

energy levels of QDs are reduced, which consequently decreases the optical gap 

in Equation (3.5) and causes a red shift in the emission. The emission spectra of 

QDs are well defined Gaussian functions with emission line-widths determined 
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by their size distributions [53]. If the size distribution of QD is narrowed down, 

the emission spectra would have a narrower full-width at half-maximum.  

 

One can tune the emission spectrum of QDs by changing the QD size as well 

as by selecting the correct material system over a desired range of wavelengths 

(e.g., below 400 nm to ca. 2000 nm [54]). For example, ZnSe QDs can emit at 

very short wavelengths, below 400 nm; whereas CdS, CdSe and CdTe QDs emit 

within the visible region. Covering the core of the QDs with a shell material 

having a larger bandgap causes further red shift in the emission spectrum. The 

FWHMs of the QD emission vary from 15 nm [55] to 50 nm [43]. Since the 

emission wavelengths and the FWHMs of QDs can be tuned within a broad 

range, QDs are very suitable materials for applications that require good spectral 

tuning capabilities such as white light source design. On top of these, achieving 

photoluminescence quantum efficiencies above 90% in solution (and over 70% 

in film) further strengthens the position of QDs for this kind of applications [56]. 

 

Another striking feature of the QDs is their absorption properties. As opposed 

to organic molecules, QDs exhibit a very broad absorption spectrum, which 

starts at the energy level of the first excitonic state and further increases towards 

shorter wavelengths following a small decrease after the excitonic state. The 

location of the excitonic state is tunable by controlling the material system and 

particle size. As in the emission peak, the excitonic peak red-shifts with the 

increasing QD size. Typical absorption spectra of QDs are given in Figure 3.5 

[57]. These properties of QDs make them even more suitable for lighting 

applications since it leads to high flexibility in the choice of pump wavelength.  
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Figure 3.5 Absorption spectra of CdSe QDs having different sizes [57]. 

 

3.2 Conjugated Polymer Nanoparticles 
 

 

 

Another material type that can be used for generating white light is the 

conjugated polymer nanoparticles (CNP). These nanoparticles, whose building 

blocks are the conjugated polymers, hold great promise also in the areas of bio-

imaging, bio-sensing, and photonics in addition to the solid state lighting.  Their 

optical properties can be tuned by selecting proper polymers and surface 

modification methods. In addition, their preparation is easier and they have less 

toxicity compared to other inorganic materials such as quantum dots. These are 

basically the main reasons why CNPs have attracted great attention in recent 

years [58]. In this section of the thesis, we focus our attention on CNPs 

dispersed in water. 

 

There are mainly two different CNP preparation methods. These are the so-

called miniemulsion and reprecipitation approaches [58]. The miniemulsion 

approach is the most frequently used one. According to this method, the polymer 

is first solved in an organic solvent, which is not miscible in water. The prepared 
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solution of polymer is then injected to water where surfactant molecules are 

dissolved prior to the injection of polymer [59]. Following this, the prepared 

mixture is ultrasonicated so that small and stable polymer droplets can be 

formed. Finally, the organic solvent, which is used to solve the polymer in the 

first step, is evaporated and polymer nanoparticles, whose sizes vary from 30 to 

500 nm, are obtained [58]. Examples of polymer nanoparticles prepared using 

miniemulsion method are poly(3,4-ethylenedioxythiophene) (PEDOT), 

poly(thiphene-3-yl-acetic acid) [60], polyacetylene [60,61] and poly(arylene 

diethynylene) [62]. 

 

The second CNP preparation method is the reprecipitation approach. Here, 

first the conjugated polymers are dissolved in a good solvent, and then this 

prepared solution is added into a liquid medium, which is not compatible with 

the polymer but has a good miscibility with the solvent of the polymer. 

Subsequently, the prepared system is ultrasonicated to help the nanoparticle 

formation. The final step is the evaporation of the polymer solvent so that CNP 

dispersion in water is obtained [58]. An example for the polymer solvent is 

tetrahydrofuran (THF) and for the liquid medium miscible with the polymer 

solvent is water.   

 

The mechanism leading to nanoparticle formation is basically the 

hydrophobicity. Upon the addition of the organic solvent into the water, 

hydrophobic polymer chains take a spherical form to minimize the contact with 

the water [58,63]. One of the main advantages of this method is the absence of 

any additive such as surfactants, which enables the applicability of the 

reprecipitation approach to many different conjugated polymers. Considering 

potential photophysical effects of these additional molecules, reprecipitation 

method provides a better control of the properties of the CNPs. Moreover, this 

method allows for the formation of nanoparticles, whose sizes change from 5-10 

nm [58] to 400-500 nm [64], by controlling the polymer concentration and 

polymer molecular weight [58]. At this point it is worth mentioning that the 
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origin of the modified optical properties of CNPs is not the quantum 

confinement effects as opposed to inorganic quantum dots. Instead their optical 

properties mainly rely on the conformational change of polymers and the nature 

of aggregates [58]. However, the change of optical properties can still be 

observed depending on the particle size [65], although there have been reports 

on the stability of optical properties upon nanoparticle formation [66]. This 

basically shows us that there is no certain optical behavior modification of CNPs 

which can be given as a rule of thumb unlike QDs; on the contrary, each 

polymer, preparation method, solvents and surfactants might result in different 

optical properties of the nanoparticles.   

 

In addition to these existing methods, there is another method which is based 

on the reprecipitation approach. In this case polymers containing functional 

groups, which can be crosslinked, form CNPs. After the nanoparticle 

preparation method, the CNPs are exposed to UV light so that a shell-like 

structure covers the CNP core [63]. The creation of a core/shell-like structures 

increases the mechanical stability of the nanoparticle and opens a pathway for 

the spectral tuning of CNP emission. Since the polymer core and crosslinked 

shell have different energy levels, they radiate in different wavelengths. In 

addition, radiative and non-radiative energy transfer occurs between the non-

crosslinked core of the CNP and its crosslinked shell. As a result, color tuning 

can be succeeded via varying mechanisms.  Figure 3.6 shows the SEM image of 

poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis(3-azidopropyl)fluorene)] (PF3A) 

nanoparticles prepared using this method and crosslinked for three hours of UV 

exposure (Figure 3.6)[63].   
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Figure 3.6 SEM image of conjugated polymer nanoparticles of poly[(9,9-dihexylfluorene)-

co-alt-(9,9-bis(3-azidopropyl)fluorene)] (PF3A) which are crosslinked for three hours [63]. 

 

In the literature several optoelectronic device applications using CNPs are 

demonstrated, among these devices are polymer light emitting diodes, light 

emitting electrochemical cells and photovoltaics [67-74]. However, all of these 

devices are constructed using the CNPs prepared by miniemulsion method. 

Recently, we demonstrated a proof-of-concept LED relying on the color 

conversion phenomenon of crosslinked CNPs prepared by reprecipitation 

method [63]. However, there is still no demonstration of an electroluminescent 

device of CNPs prepared using this method [58].   
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Chapter 4 
 

 

White Light Emitting Diodes 
 

 

 
 

 

 

The solid state lighting is expected to replace the existing light sources such as 

incandescent and fluorescent lamps in the near future, because of its superiority 

[75]. In this chapter we focus on the existing technology of white light emitting 

diodes (white LEDs). We start reviewing the traditional light sources. Following 

this, we discuss the efficiency requirements for white light sources. Finally we 

review with white LEDs having different material systems and structures.  

4.1 Traditional White Light Sources 
 

 

 

 

 

 

Among the traditional sources, kerosene illumination is the most primitive and 

worst one as it possesses the lowest photometric quality. However, it still 

continues to be used in the countries where the electricity supply is not available 

[76]. On the other hand, incandescent light sources are very widely used 

throughout the world although their use is forbidden in some countries such as 

Argentina, Switzerland, European Union, Australia and Canada [77-80]. The 

main reason of this ban is their very low power conversion efficiency (PCE), 

which is around 5% [75]. They are basically black body radiators; therefore, 

they can render the real color of the illuminated objects almost perfectly, in 

other words, featuring a color rendering index (CRI) of 100. However, in 

addition to the low PCE, another weak point of them is the low luminous 

efficacy of optical radiation (LER) (ca. 15-20 lm/Wopt) [81], which is directly 

related to the broad blackbody radiation spectrum. When it comes to the 
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fluorescent lamps, low photometric performance issues still continue. Their 

emission spectra lead to a LER of ca. 70 lm/Wopt [82], which still remains low. 

Furthermore, its power conversion efficiency is also very low, though it is about 

five times better than incandescent lamps [75]. Another concern of fluorescent 

lamps is environmental (rather than being photometric). These lamps contain 

significant amount of mercury in gas phase; therefore, they present a serious risk 

of being harmful to environment as well as to human health in the case that the 

fluorescent tube is broken.  

4.2 Requirements for High-efficiency in White 

Light Generation 
 

 

 

 

 

 

As mentioned in Chapter 2, a good white light source has to satisfy some 

photometric and colorimetric properties so that it can deliver high-efficiency and 

high-quality. The most important two of these requirements are good color 

rendition and high-efficiency of the optical radiation perceived by the human 

eye. The first one is evaluated mostly using the metrics such as color rendering 

index (CRI) and color quality scale (CQS). As mentioned in Ref. 83, an efficient 

white light source should exhibit at least a CRI of 90 for indoor applications. 

Since the calculation method of CQS is very similar to CRI, this limit of CRI 

can also be used for CQS calculations. In addition to this, a warmer white shade 

is desirable for indoor lighting, which corresponds to correlated color 

temperatures (CCTs) less than 4000 K.  On the other hand, for outdoor 

applications, CRI is also important because a high CRI increases the color 

contrast and consequently the objects under low optical power illumination can 

be perceived more easily [84]. The second performance criterion is evaluated in 

accordance with the luminance level of the light source. For indoor lighting, 

LER should be as high as possible, for which the targeted level is 408 lm/Wopt 

[83]. On the other hand, for outdoor applications the luminance in the mesopic 

regime should be higher. In addition, at even lower light levels, where the vision 



 39 

regime is scotopic, having a high S/P helps to perceive higher brightness [31].  

For example, the S/P of the standard daylight source D65, which is 2.47, can be 

used as a reference point. Obtaining a higher S/P yields a better brightness and 

perception at low light levels.  

 

In addition to all of these points mentioned above, a high electrical efficiency 

is also important for the purposes of energy saving. According to the study of 

Phillips et al., the power conversion efficiency of the white LEDs have to be 

larger than 70% [83].  

 

4.3 White Light Emitting Diodes 
 

 

 

 

 

 

There are several methods of obtaining white light emission using light emitting 

diodes. The most important ones can basically be categorized into two. The first 

approach is the multichip LED approach, where the white light emission is 

generated via the radiation of individual LED chips. The latter method makes 

use of the photoluminescence of a fluorescent material, which is integrated on 

top of a LED emitting at a shorter wavelength. This phenomenon is called the 

color conversion, wavelength up-conversion, or energy down-conversion. 

Another important class of LEDs is the organic light emitting diodes (OLEDs), 

which are based on the electroluminescence of the organic molecules. Although 

they hold great promise in the future, currently, their efficiencies typically 

remain low and will have to be below 25% when the electroluminescence (and 

also photoluminescence) mechanisms relies on fluorescence (instead of 

phosphorescence).  
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4.3.1 Multichip White LEDs 
 

In this method, LEDs emitting in different colors are packaged together such 

that a white light emission is collectively obtained. The blue and green colors 

are obtained via InGaN whereas red emission comes from AlGaInP [85]. Since 

the linewidth of LED emission is very narrow, around 20-25 nm, this method 

enables very good tuning of the emission spectra so that high photometric and 

colorimetric performance can be achieved. However, their main drawback is the 

cost of the overall system. Another important problem is the green gap. Today, 

there is no epitaxial material system, which provides an efficient 

electroluminescence in green region. 

 

4.3.2 White LEDs Based on Color Conversion  
 

The color conversion approach of white LEDs relies on the fact that the 

materials excited by a high-energy photon emit low-energy photons. There are 

several classes of these materials such as organic dyes, polymers, phosphors 

made of rare-earth ions and semiconductor quantum dots (QDs). The LED chip 

pumping the color convertors typically emits either in blue or near UV.  

 

There are several organic dyes that can be incorporated in LEDs such as 

Coumarin 6 and Coumarin 450 [9,86]. Although this class of materials has very 

large quantum efficiencies, they have two serious drawbacks. One of them is 

their narrow absorption band, which limits the choice of the pump LED. 

Another one is their photo-bleaching problem. 

 

The conjugated polymers can be incorporated on LEDs like the dyes 

mentioned above. By choosing appropriate polymers, one can tune the 

wavelength of the polymer emission. As in the case of dyes, these materials also 

have relatively narrow absorption bands, but very high quantum efficiencies. 
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Additionally, they also suffer from photo-bleaching. Another problem of the 

organic molecules is the change of optical properties in film as a result of 

restriction of conformational freedom. In addition to polymers themselves, their 

nanoparticles can also be used as color convertors, which substantially avoid 

strong modifications in the solid film once the particles are formed prior the 

casting them into a film. Furthermore, using conjugated polymer nanoparticles 

prepared by the reprecipitation method color tuning is possible, which might be 

helpful for lighting applications.    

 

Another important and most widely used class of color conversion materials 

for white LEDs is the rare-earth ion doped phosphors. In general, yttrium 

aluminum garnet (YAG) is doped with the ions of rare-earth elements such as 

gadolinium (Gd), cerium (Ce) and terbium (Tb) [9,87]. Although this is the most 

common white light generation method using LEDs, it has some important 

pitfalls. One of them is the inevitable tail of red phosphors towards longer 

wavelengths, which significantly decreases LER and LE, although they have 

high photoluminescence quantum efficiencies [88]. It is not easy to control their 

emission spectra. Therefore, optimization of different colorimetric and 

photometric properties is not possible or very challenging. Moreover, in recent 

years, the mining of rare-earth elements, which is under the Chinese monopoly, 

encountered export quotas [87]. Therefore, Japan experienced a shortcoming on 

the supply of these elements and a global concern has risen whether the rare-

earth element supply is going to be used for a bargaining chip in the 

international arena. Therefore, new alternatives are on high demand [89].       

 

Considering the problems of phosphors, quantum dots (QDs) make a good 

alternative. Their narrow emission bands allow for good spectral tuning of white 

light; as a result, all of the photometric properties of the device can be optimized 

upon careful spectral designs [90]. Furthermore, recently QDs having high 

quantum efficiencies have been reported, which enables high power conversion 

efficiencies and consequently, high luminous efficiencies of white LEDs [56]. 
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On top of these, the synthesis of QDs is easy and required materials do not 

suffer from supply problems. But a major issue is that cadmium-free QDs are 

required due to environmental concerns. However, the synthesis of these types 

of QDs is not as mature as Cd-containing ones and their quantum efficiencies 

typically remain lower compared to Cd-containing ones for the time being.    
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Chapter 5 
 

 

Efficient White LEDs for Indoor 

Lighting using Quantum Dot 

Nanophosphors 

 

 

 

5.1 Spectral Recommendations for White Light 

Emitting Diodes 
 

 

 

 

 

 

This section is based in part on the publication “A photometric investigation of 

ultra-efficient LEDs with high color rendering index and high luminous efficacy 

employing nanocrystal quantum dot luminophores” T. Erdem, S. Nizamoglu, X. 

W. Sun, and H. V. Demir, Optics Express 18, 340 – 347(2010). Reproduced (or 

“Reproduced in part”) with permission from Optical Society of America. 

Copyright 2010 Optical Society of America. 

 

 

Warm white light sources with high CRIs and high LERs require the generation 

of a white emission spectrum by strategically selected colors with the lowest 

possible full-width-at-half-maximum (FWHM) values, as reported by Phillips et 

al. [83]. Our group previously reported that this requirement can be met in 

principle using semiconductor nanocrystal quantum dots. However, optical 

parameters including the peak emission wavelength (WL), full-width-at-half-

maximum (FWHM), and the relative amplitude of each QD color component 
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need to be carefully designed to achieve such high-quality white light generation 

with CRI >90, LER >380 lm/W at a warm CCT (i.e., CCT <4000 K), which can 

compete with conventional white light sources [83]. Nevertheless, the previous 

works including ours and others have not addressed these requirements of ultra-

efficient performance with CRI >90 and LER >380 lm/Wopt using quantum dot 

nanophosphors. Additionally, the fundamental relationship and trade-offs 

between CRI, LER, and CCT are still not completely understood for the case of 

luminophores with narrow FWHMs such as QDs. Prior to this work, only the 

dependence of CRI and LER at 4870 K has been reported with only 2000 

different spectra [91]. In this work, we present the required parameters for high-

quality warm white light generation as well as the relationship and trade-offs 

between the performance parameters of the light source by investigating 

237,109,375 QD-WLED designs.     

 

5.1.1 Calculations  
 

We developed a computational approach to photometrically evaluate different 

LED designs. In our simulations, the emission spectrum of QDs is modeled as a 

Gaussian function [53]. The chosen wavelength intervals for each color source 

are swept with a 10 nm step size between 450 and 490 nm for blue, between 500 

and 540 nm for green, between 550 and 590 nm for yellow, and between 600 

and 640 nm for red. In addition, FWHM of each color component is changed 

between 30 and 54 nm with a step size of 6 nm. Furthermore, the amplitude of 

each color component spectrum is varied by multiplying with an integer 

between 1 and 5. Subsequently, the amplitudes of every color component are 

normalized to 1000 for easy comparison with other spectra. By considering all 

of the different spectral combinations, a total of 237,109,375 possible emission 

spectra have been systemically generated and investigated using [9] for LER and 

CRI calculations and [92] for CCT computations.      
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5.1.2 Results  
 

To obtain warm white light sources with CRI >80, LER >300 lm/Wopt at 1500 

K< CCT < 4000 K, the generated emission spectra are selected and tested. As a 

result of the simulations, only 4,896,155 spectra are left, which correspond to ca. 

2% of the entire spectra generated. When the spectra with CRI <90 and LER 

<380 lm/Wopt are filtered out, the number of remaining spectra is decreased to 

3192, corresponding to ca. 0.001% of the entire number of spectra tested. This 

finding shows that efficient white LEDs with high color quality are in fact hard 

to achieve. Therefore, it is very critical to understand the effect of the input 

parameters on the performance criteria and also the trade-offs between them as 

discussed below.  

 

5.1.2.1 Input Independent Analysis  
 

To understand the relationships between CRI, LER, and CCT, the graph of CRI 

vs. LER is presented in Figure 5.1 by only considering the data satisfying 2450 

K< CCT <2550 K, 2950 K< CCT <3050 K, and 3450 K< CCT <3550 K. The 

investigation of these curves shows that CRI decreases as LER increases in all of 

the CCT cases. This relationship makes it clear that the performance in terms of 

CRI should be sacrificed to obtain high optical efficiency. Additionally, it is 

observed that the highest possible CRI value decreases when CCT increases. 

However, this change is not significant so that it is still possible to obtain high-

quality warm white LEDs with high CRIs at low CCTs. For example, 

theoretically it is possible to achieve an emission spectrum satisfying LER >380 

lm/Wopt and CRI >90 below a CCT of 2500 K (at CCT=2326 K). Another 

important result of the input independent analysis comes out to be the increase of 

the highest achievable LER when CCT increases. Thus, there is a trade-off for 

obtaining high efficacy and warm color temperature at the same time. 

Furthermore, as CCT increases, the slope of the curve gets gentler at the same 
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LER value on the border. This shows that the change of CRI with respect to LER 

slows down as CCT increases. 

 

Figure 5.1 CRI vs. LER dependence between (a) 2450 K< CCT <2550 K, (b) 2950 K< CCT 

<3050 K, and (c) 3450 K< CCT <3550 K. 

 

The relationships of CRI vs. CCT, CRI vs. LER, and LER vs. CCT are 

investigated and the results are shown in Figure 5.2(a), (b) and (c), respectively. 

In Fig. 2(a), the highest obtainable CRI value increases from 1500 to 2200 K. 

After 2200 K, CRI starts to decrease. The analysis of the spectra at the 

boundaries reveals that these points in the region between 1500 and 2200 K 

have LERs approximately 300 lm/Wopt, which is due to our restriction of LER 

>300 lm/Wopt in our calculations. After 2200 K, however, the boundary LER 

values are much higher than 300 lm/Wopt, and this is the region where the 

fundamental trade-off between CRI and CCT appears. In Figure 5.2(b), the 

maximum obtainable CRI does not change significantly for low LER values 

between 300 and 330 lm/Wopt; however, further increase of LER causes CRI to 

decrease. This relation between CRI and LER is expected because if one source 

has a high CRI, its spectrum should have a power distribution covering the 

visible region. Therefore, LER decreases with wider emission spectrum. Also 
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the analysis of the boundary points shows that there does not exist a general 

trend between CCT and CRI. By analyzing together with the results of the 

previous analysis, we conclude that the border of the CRI vs. LER graph is 

formed by the limiting trade-off of CRI vs. LER at different CCT levels. As 

shown in Figure 5.2(c), the increase of LER requires the increase of CCT. To 

obtain light sources with high LERs, the generated spectra should be cooler 

because the spectral power distribution around the peak of the eye sensitivity 

function increases. If we investigate the points having the highest LERs, these 

points are observed to exhibit CRI values very close to our restriction of 80, 

which limits the LER vs. CCT graph. 

 

 

Figure 5.2 Relations between (a) CRI and CCT, (b) CRI and LER, and (c) LER and CCT. 

 

We further investigate whether the analyzed spectra fall in the white region on 

CIE 1931 chromaticity diagram. This analysis, however, requires a mathematical 

definition of the white region, but such a commonly accepted or widely used 

definition has not been found in the literature. To define the white region, we 

mathematically analyze the elliptic white area given in Ref. 9. By fitting this 

ellipse, we derive Equations (5.1)–(5.3) to define the white region used in this 

work. Our analysis shows that the photometric relations for only white points 

(shown in red in Figure 5.3) follow those for all data points including near-white 

points (shown in blue in Figure 5.3). Noticeably, in Figure 5.3 most of the data 

points are found to fall in the white region.  
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Figure 5.3 (a) CRI vs. LER relationship and (b) LER vs. CCT relationship for white data 

points (shown in red) and near-white points (shown in blue).  

 

  

5.1.2.2 Input Dependent Analysis  
 

The input parameters in our simulation include FWHM, relative amplitude, and 

peak emission wavelength. The analysis of the effects of the input parameters is 

carried out by calculating the average and standard deviation (stdev) of every 

input parameter satisfying two conditions: The first condition is CRI >80 and 

LER >300 lm/Wopt and the second one is CRI >90 and LER >380 lm/Wopt. The 

average and stdev of the cases passing these thresholds are presented in Table 

5.1. 
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5.1.2.2.1 Analysis of FWHMs  
 

When the FWHMs of blue, green, and yellow color components are studied for 

both sets of conditions, it is observed that their average is around 43 nm and their 

stdev is ca. 8.3 nm in both cases. Such a high stdev of FWHM and almost the 

same average values for both of the cases show that the choice of FWHM for 

these color components is not critical to obtain high performance in designing 

QD based white LEDs. When the same analysis is conducted for the red color 

region, significantly different results are obtained. For CRI >80 and LER >300 

lm/Wopt, the average FWHM for red is around 40 nm with a similar stdev of other 

color components. However, for CRI >90 and LER >380 lm/Wopt, this average 

FWHM decreases to 32 nm and its stdev significantly decreases to 3.5 nm. 

Considering that the narrowest FWHM in these calculations is 30 nm, it can be 

concluded that the FWHM of the red component is very critical for high 

performance and the emission linewidth should be as narrow as possible. 

5.1.2.2.2 Analysis of Peak Emission Wavelengths  
 

The comparison of both performance criteria presented above in the blue spectral 

region shows that the average peak wavelength of blue color remains almost the 

same for both cases, around 465 nm, with a relatively high stdev (12.6 and 9.1 

nm). Although there is a decrease in stdev in the high performance case, it is still 

not a very strong restriction for high performance. This shows that blue peak 

emission wavelength is not so critical, as long as it is not significantly different 

from 465 nm.  

 

In the green spectral region the average peak emission wavelength for both 

cases is ca. 527 nm, again with a relatively high stdev (11.6 and 9.1 nm). 

Although we observe a decrease of 2.5 nm in the standard deviation, this 

decreased value of the standard deviation still does not strongly restrict the choice 

of peak emission wavelength in the green spectral range. This points out that the 
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green peak emission wavelength is not as critical, either, provided that it is close 

to 527 nm. 

 

In the yellow spectral region, the average peak emission wavelength for CRI 

>80 and LER >300 lm/Wopt is 574.8 nm with a stdev of 13.2 nm. For CRI >90 

and LER >380 lm/Wopt, the average peak emission wavelength is blue-shifted by 

ca. 6 nm. Although the standard deviation is not low (ca. 10 nm), it is still worth 

noting this shift of the average peak emission wavelength. By considering these 

results, it can be concluded that the peak emission wavelength of yellow 

component should be around 570 nm for high performance, but high stdev allows 

a wider window for choosing the peak emission wavelength. 

 

  For CRI>80 & LER > 300 lm/Wopt For CRI>90 & LER > 380 

lm/Wopt 

Average Standard Deviation Average Standard 

Deviation 

FWHM 

(nm) 

Blue 43.2 8.4 44.4 8.3 

Green 42.4 8.5 43.3 8.4 

Yellow 44.1 8.3 44.0 8.2 

Red 40.4 8.3 32.1 3.5 

WL (nm) Blue 465.7 12.6 465.1 9.1 

Green 527.0 11.6 527.9 9.1 

Yellow 574.9 13.3 569.0 9.7 

Red 625.5 9.0 620.7 2.5 

Relative 

amplitude 

(/1000)  

Blue 160.9 64.3 97.5 19.6 

Green 213.2 81.1 229.0 77.5 

Yellow 243.0 78.2 241.3 71.1 

Red 383.2 75.9 432.4 48.7 

Table 5.1 Average and standard deviation values of the input parameters of the spectra 

satisfying the conditions of CRI >80 and LER >300 lm/Wopt, and CRI >90 and LER >380 

lm/Wopt. 

 

The average peak emission wavelength of the red color component is around 

625 nm with a relatively high stdev (ca. 9 nm) in the case of CRI >80 and LER 

>300 lm/Wopt. For CRI >90 and LER >380 lm/Wopt, the average peak emission 

wavelength shifts to 620.7 nm together with a strong decrease in stdev down to 

2.5 nm. This shows that one of the most critical components for high 

performance is the peak emission wavelength in the red spectral region. To 
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obtain high performance, red peak emission wavelength needs to be close to 620 

nm. 

 

5.1.2.2.3 Analysis of Relative Amplitudes  
 

In the case of CRI >80 and LER >300 lm/Wopt, the average relative amplitude of 

blue component is around 161/1000. This value decreases to 97.5/1000 for CRI 

>90 and LER >380 lm/Wopt case. This shows that the amount of blue color 

should be very small to obtain high performance. Additionally, the decrease of 

stdev from 64.3/1000 to 19.6/1000 indicates that the weight of the blue 

component should be close to the indicated average value. 

 

The analysis of the relative amplitude values in the green spectral region 

shows that the average weight of the green component is 213.2/1000 in the case 

of CRI >80 and LER >300 lm/Wopt. For the high performance case, this value 

increases to 229.0/1000. The stdev for both of the cases is relatively high 

(around 80/1000), which indicates that the relative amplitude of green 

component has a relatively large window because of its high standard deviation 

value.  

 

For CRI >80 and LER >300 lm/Wopt case, the average amplitude of the 

yellow component is observed to be 243.0/1000. In the high performance case, 

this value remains almost the same. Moreover, stdev values for both of the cases 

are relatively high (between 78.2/1000 and 71.1/1000, respectively). As a 

conclusion, in order to obtain high performance, the relative amplitude of the 

yellow component should be around 240/1000 and the high standard deviation 

value allows to cover a larger relative amplitude window.  

 

In the lower performance case with CRI >80 and LER >300 lm/Wopt, the 

average value of the relative amplitude of the red color is around 383/1000. In 

the higher performance case with CRI >90 and LER >300 lm/Wopt, the red 
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component grows stronger and the average value increases to 432.4/1000. In 

addition to this, standard deviation decreases from 75.9/1000 to 48.7/1000. 

When all of this information is considered, it turns out that the weight of the red 

component is very critical for high performance due to its low standard 

deviation. Thus the relative amplitude of red color should be as close as possible 

to 430/1000. According to the results of these calculations, some exemplary 

spectra and their performance are given in Table 5.2. 

WL (nm) Relative 

amplitude 

(/1000) 

FWHM 

(nm) 

LER 

(lm/Wopt) 

CCT 

(K) 

CRI 

460, 530, 

570, 620 

91, 182, 

273, 455 

36, 54, 

54, 30 

380 2600 90.7 

 

470, 530, 

570, 620 

 

91, 273, 

182, 455 

 

54, 48, 

30, 30 

 

388 

 

3000 

 

91.7 

 

450, 510, 

560, 620 

 

83, 167, 

333, 417 

 

30, 30, 

42, 30 

 

384 

 

3200 

 

91.0 

 

460, 520, 

560, 620 

 

100, 200, 

300, 400 

 

36, 42, 

54, 30 

 

385 

 

3400 

 

90.8 

Table 5.2 Exemplary results of the photometric computations. In the columns of WL, 

relative amplitude, and FWHM, the first numbers belong to the corresponding property of 

the blue spectrum. The other numbers in those columns stand for green, yellow, and red 

spectral content, respectively. 

 

The average values of CRI >80 and LER >300 lm/Wopt results in a spectrum 

with CRI=92.0, CCT=3308 K, and LER=352 lm/Wopt, and the photon counts in 

blue, green, yellow, and red region are 132.2/1000, 198.3/1000, 246.5/1000, and 

423.0/1000, respectively. When the average values of the parameters in the high 

performance case (CRI >80 and LER >300 lm/Wopt) are used, the resulting 

spectrum exhibits CRI = 91.3, CCT = 3041 K, and LER=386 lm/Wopt, and the 

relative number of photons are 79.3/1000, 211.4/1000, 240.1/1000, and 

469.3/1000 in blue, green, yellow, and red spectral regions, respectively. The 

relative spectral power distribution for the average values of input parameters 

for CRI >80 and LER >300 lm/Wopt and for CRI >90 and LER >380 lm/Wopt are 

shown in Figure 5.4(a) and Figure 5.4(b), respectively. 



 53 

 

Figure 5.4 The relative spectral power distribution for the average values of input 

parameters in the case of (a) CRI >80 and LER >300 lm/Wopt and (b) CRI >90 and LER 

>380 lm/Wopt. 

 

5.1.3 White LED design recommendations  
 

 

 

 

 

 

To achieve white LEDs with high optical performance, it is advisable to use four 

colors in blue, green, yellow and red spectral ranges, as also suggested in [83]. 

Further recommendations can be considered in the light of Table 5.1, which 

presents a good pathway to obtain high performance. According to the results of 

this analysis, the color-component requirements for the corresponding peak 

emission wavelengths are 465.1  9.1 nm for blue, 527.9  9.1nm for green, 

569.0  9.7 nm for yellow, and 620.7  2.5nm for red spectral region. Color-

component FWHMs should be 44.4  8.3 nm for blue emission, 43.3  8.4 nm 

for green emission, and 44.0  8.2 nm for yellow emission, considering the 

limitations determined by the respective standard deviation values. For the red 

region, however, it is important that its FWHM remains as narrow as possible 

(the smallest value in our simulations is 30 nm). Another significant parameter 

for high-quality white light generation is the relative amplitude of each color 

component. This should be 97.5/1000.0  19.6/1000.0 (the weakest) for blue and 

432.4/1000.0  48.7/1000.0 (the strongest) for red, whereas the relative 
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amplitudes of green and yellow components need to be at the medium level of 

229.0/1000.0  77.5/1000.0 and 241.3/1000.0  71.1/1000.0, respectively.   

  

5.1.4 Conclusions  
 

 

 

In conclusion, the relationship and trade-offs between the performance 

parameters including CRI, LER and CCT of the white LEDs are presented. 

Additionally, the effects of the parameters (peak emission wavelength, FWHM, 

and relative amplitude) of each QD color component are investigated on the 

performance of the resulting WLEDs. As a result, it is shown that the 

performance of ultra-efficient LEDs even with CRI >90 and LER >380 lm/Wopt 

is achievable in principle using QD luminophores. If such high-quality white 

LEDs integrated with QDs luminophores are realized, they are expected to be 

used in future indoor lighting applications to provide higher quality light 

compared to the current light sources.  

 

5.2 Experimental Demonstration  
 

 

 

 

 

 

This section is based in part on the publication “Warm-white light-emitting 

diodes integrated with colloidal quantum dots for high luminous efficacy and 

color rendering” S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, Optics 

Letters 35, 3372 – 3374 (2010).  

 

For generating white light emission, we hybridized CdSe/ZnS QDs on an 

InGaN/GaN blue LED emitting at 452 nm [93]. We used QDs emitting in three 

different colors; green at 528 nm, yellow at 560 nm and orange at 609 nm. 

However, these emission properties belong to QDs dissolved in toluene. 

Therefore, drop-casting these QDs in poly(methyl methacrylate) host results in 

unpredictable shifts in the emission properties due to environmental changes and 
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dipole-dipole interactions between QDs. To forecast whether the resulting 

spectrum can result in high photometric efficiency, we employed a simulation 

by modeling QD and blue LED emissions as Gaussian functions. We changed 

the peak emission wavelengths of the blue component between 450–470 nm, the 

green component between 535–555 nm, the yellow component between 557–

577 nm and finally the orange component between 610–630 nm, all with a step 

size of 10 nm. The FWHMs of blue, green and yellow QD films are changed 

between 25 and 55 nm, with a step size of 10 nm. The FWHM of the red 

component is varied from 30 to 50 nm, with a 10 nm step size. As another 

parameter of optical spectrum design, we also changed the amplitudes of every 

color components. The amplitudes of blue, green and yellow components are 

changed between 430 and 470, 750 and 790, 470 and 510 units, respectively, all 

with a step size of 20 units. The red component is designed so that its amplitude 

changes between 1400 and 1500 with a step size of 50 units. All in all, we 

simulated 1,180,980 white LED designs and found out that high photometric 

performance can be achieved (Figure 5.5).    

 

Figure 5.5 Potential performance of white LED designs using the combinations green, 

yellow and orange of QDs emitting at 528, 260 and 609 nm [93]. 

 

By using the QDs stated above, we hybridized three different white LEDs. 

The first one is built up using 31.91 nmol, 1.42 nmol and 0. 37 nmol of green, 

yellow and orange emitting QDs, respectively (WLED#1). This white LED 

possessed a CRI of 89.2 and a LER of 357 lm/Wopt, together with a CCT of 
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2982 K when the blue LED is driven with a current of 12 mA. The 

corresponding spectra and the chromaticity coordinates at various currents are 

given in Figure 5.6. 

 

Figure 5.6 The emission spectra and chromaticity coordinates of WLED#1 together with 

the picture of the white LED [93].  

 

The second white LED contains the same amount of green and yellow QDs, 

however, red content is increased to 0.55 nmol. As a result of this, the spectrum 

of WLED#2 reveals a CRI of 88.9 and LER of 349 lm/Wopt, together with a 

decreased CCT of 2781 K. Corresponding spectra at varying current levels can 

be found in Figure 5.7, which also demonstrates the change of chromaticity 

points and the picture of the WLED#2.  
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Figure 5.7 The emission spectra and chromaticity coordinates of WLED#2 together with 

the picture of the white LED [93]. 

 

 

Further increase of the red QD content to 0.74 nmol causes very small drops in 

CRI and LER down to 87.8 and 339 lm/Wopt, respectively. As the red content is 

increased, WLED#3 has a warmer white emission corresponding to a CCT of 

2390 K. Figure 5.3 presents the electroluminescence spectra of WLED#3 together 

with their chromaticity coordinates and the picture of the working device.  

 

Figure 5.8 The emission spectra and chromaticity coordinates of WLED#3 together with 

the picture of the white LED [93]. 
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In conclusion, we demonstrated that high photometric performance of QD-

WLEDs is achievable and furthermore, the photometric properties of the device 

are tunable by controlling the QD amounts in the device architecture [93]. We 

further showed that we can tune the white LED spectra so that its color rendition 

performance is enhanced for all of the test samples used in the calculation of 

CRI.   

 

5.3 Power Conversion and Luminous Efficiency 

Potentials of QD-WLEDs  
 

 

 

 

 

 

This section is based in part on the publication “Power conversion and 

luminous efficiency performance of semiconductor quantum dot nanophosphors 

on light-emitting diodes” T. Erdem, S. Nizamoglu and H. V. Demir, in 

submission. 

 

As mentioned in the previous chapter, rare-earth ion based phosphors are the 

most preferred color converters in white LEDs. Although they achieved 

individual levels of LER ≥270 lm/Wopt [94], CRI ≥90 [95], CCT ≤4000 K [96] 

and LE ≥140 lm/Welect [97] in different implementations, optimization of these 

properties cannot be realized together because of their fundamental broad band 

emission and consequently because of the difficulties in spectral tuning. 

Additionally, the concerns have increased recently regarding the supply of the 

rare-earth elements and alternatives to them are therefore in high demand 

[87,89]. One of the candidates to replace phosphors is the semiconductor 

colloidal quantum dots (QDs). Using the QDs for color conversion on LED 

chips to generate white light emission allows the tuning and optimization of 

emission spectrum and corresponding color optimized thanks to their narrow 

emission linewidths. Because of the same reason, very high photometric 

performance (LER ≥380 lm/Wopt, CRI ≥90 and CCT ≤4000 K) can be achieved 
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simultaneously when QD combinations are selected carefully [90]. On top of 

these, the colloidal synthesis of QDs is easy and their quantum efficiencies 

reached very high levels, exceeding 90% in solution and 70% in film [56]. This 

may potentially lead to high levels of PCE and correspondingly high LE. 

However, PCEs and LEs of such high photometric quality QD-LEDs have not 

been studied and their potential for ultra-high performance have not been 

examined. Moreover, the potential effects of different architectural designs on 

QD-WLEDs were unknown till date. In this part of this thesis, we examined 

these missing points by studying and modeling the photon conversion processes 

of QDs as color convertor nanophosphors in two main architectures considering 

the changes of their quantum efficiencies. 

 

5.3.1 Computational Models of PCE and LE 

Calculations 
 

 

 

 

Our computational models are based on four-color mixing white LEDs, where 

green-, yellow- and red-emitting QDs are integrated on top of a blue LED. 

Furthermore, we worked only on the designs possessing CRI ≥90, LER ≥380 

lm/Wopt and 1500 K ≤CCT ≤4000 K to satisfy high photometric performance 

criteria using the results of Ref. 90. In these architectures, the generation of white 

light relies on the color conversion phenomenon. Green, yellow and red QD 

layers are pumped by the blue photons generated by blue LED, or else these 

photons are extracted from the device without being absorbed in QD layers. The 

generated green photons are either absorbed within green QD layer or lost 

because of the non-unity quantum efficiency of the QDs. Some of them are also 

absorbed by yellow or red QDs whereas the remaining ones are out-coupled. 

Yellow photons are generated by the pumping of blue or green photons. These 

yellow photons can be absorbed by the yellow QDs, while some of them are 

absorbed by red QDs and remaining ones are extracted. Red photons are 

generated through the pumping of blue, green or yellow photons in the red QD 
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layer. Some of these photons are also lost because of the self-absorption and non-

unity quantum efficiency of red QDs and the rest might be out coupled. As a 

result, a white light spectrum is obtained containing photons generated by blue 

LED and by green, yellow and red QD layers. 

 

Our models are based on two basic white LED architectures. The first 

architecture (A) has red, yellow and green QD layers in order from bottom to top 

on the blue LED. The latter architectural design (B) is the blend of red, yellow 

and green QDs placed on the LED (Figure 5.9). The photon transfer equations of 

both of the architectures are derived using system box approach of control theory. 

Every system box denotes an emission or absorption process with a 

corresponding fraction (or probability) of photons experiencing the associated 

process within or between the QD layers. In our calculations, we made use of two 

different power conversion efficiency (PCE) for the blue LED: one having a unity 

PCE, which is used to examine the performance of QD layers on an ideal blue 

LED chip and explore the effects of color conversion alone, and the second one is 

taken as an experimentally demonstrated, high-performance LED having a 

reported PCE of 81.3% [98]. 

 

Figure 5.9 Three basic architectures of QD-WLEDs modeled in this work: A, Arev and B. 

 

In our computations we used several assumptions to make the calculations 

feasible. First, we assumed the full reflection of the downwards emitted light 

from the bottom perfect mirrors such that only the photons traveling upwards 

leave the device. Moreover, the effects of scattering occurring due to QDs are 

ignored together with the reflections between QD layers. We performed our 
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computations for an extraction efficiency of unity during the transition of 

photons from the red QD layer to the air, which can be approximately realized 

physically with specially designed structures. Also, the emission spectra of the 

blue LED and QDs are assumed to be Gaussian functions. Another assumption 

has been that all of the photons within the same Gaussian spectrum experience 

the same absorption coefficient. Although this one is a crude assumption, we 

have observed that this assumption still succeeds in providing very accurate 

results as long as the peak emission wavelength of the Gaussian spectrum to be 

absorbed is far away from the excitonic peak of the absorbing QD layer. The 

error is the largest when the emission peak is near to the excitonic peak of the 

absorbing QD layer. For the QD film thicknesses we use, this corresponds to a 

maximum error of ca. 0.1 in the absorbed photon fraction. Therefore, self-

absorption (SA) is underestimated. If the quantum efficiencies of QDs decrease, 

the required layer thicknesses increase as well. Consequently, this deviation 

from the correct value is observed to decrease. Another assumption we further 

made in this work is that a fraction k of the generated photons from QDs is 

emitted upwards and remaining 1-k downwards, that the downwards emitted 

photons are totally reflected back from a mirror so that all of the photons leave 

the device from its top side. The results that we present in this work correspond 

to the case of k=1/2. 

 

To calculate PCE and LE, first the emission spectrum of QDs has to be 

related to their absorption spectrum. To achieve this, CdSe QDs are chosen 

because of the availability of the required information in the literature. The 

emission peak (λem) and the first exciton peak of the absorption spectrum (λabs) 

are related by fitting a linear semi-empirical curve to the data provided by 

Boatman et al. [99], as in Equation (5.4): 

8.3045

1.0308

em
abs  (5.4) 

The absorption spectrum of QD films are taken from Ref. 100 and absorbed 

fraction information is converted to absorption coefficient data for large QDs 
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having a thickness of 200 nm. The absorption coefficient of a QD given its 

emission peak is found by shifting the data obtained from Ref. 100 in 

accordance with λabs. 

The PCE of a QD integrated white LED (QD-WLED) can be calculated when 

the necessary number of blue photons (Sb1) pumping QDs is found given the 

number of photons (per unit time) in all of the color components in the final 

white light spectrum, i.e., blue (Sb), green (Sg), yellow (Sy) and red (Sr). The 

calculation of Sb1 depends on the architecture of QD-WLED. The methodology 

to calculate this quantity will be explained in the coming sections. In order to 

find the power conversion efficiency of QD-WLED, the number of the photons 

coming out of the blue LED (Sb1) should be compared with a real blue LED.  

For this purpose, we use the information of the blue LED given in Ref. 98, 

whose power conversion efficiency is 81.3%. This means given an electrical 

power (Pelec) of 1 W, this LED will radiate with an optical power (Popt) of 813 

mW. Now, we have to relate this optical power to the number of photons as in 

Eq. (5.5):    

1 ,Δopt b LED b bP S g d  (5.5) 

where gLED(λb,Δλb) represents a normalized Gaussian function centered at the 

peak of blue LED with a given full-width-at-half maximum (Δλb) for a single 

photon. Thus, γ (the normalization factor) turns out to be as in Equation (5.6): 

1 ,Δ

opt

b LED b b

P

S g d
 (5.6) 

As a result, the number of photons for all of the color components scaled with 

respect to the real LED is given by Equations (5.7)-(5.10): 

,b final bS S  (5.7) 

,g final gS S  (5.8) 

,y final yS S  (5.9) 

,r final rS S  (5.10) 
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where g(λi,Δλi) is a normalized Gaussian function centered at the wavelength λi 

and having a full-width at half-maximum of Δλi containing a single photon of 

color i. Then, the resulting spectral power distribution of white emission is given 

in Equation (5.11): 

, , , ,,Δ ,Δ ,Δ ,Δb final b b g final g g y final y y r final r rs S g S g S g S g (5.11) 

As a result, the power conversion efficiency (PCE) is given by Equation 

(5.12). 

elec

s d
PCE

P
 (5.12) 

Finally, the luminous efficiency (LE) is equivalent to the product of power 

conversion efficiency and luminous efficacy of optical radiation (LER), as given 

in Equation (5.13): 

LE PCE LER  (5.13) 

 

  

5.3.1.1 Computational Modeling of Architectures  
 

In this work, PCEs of two different QD-WLED architectures are computed. The 

first architecture consists of red, yellow and green QD layers from bottom to top 

on a blue LED chip (A). The second one models the film made of a QD blend. In 

addition, we modeled a third architecture by reversing the order of QD layers in 

A (Arev) to compare with the original architecture (A) and the second basic one 

(B). However, it was obvious from the beginning that this structure will perform 

worse as a consequence of increasing photon transfer to other QD layers due to 

the order of QD layers. 
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5.3.1.2 Modeling the Architecture A  
 

In A (and Arev) c1, c2 and c3 stand for the fraction of blue photons absorbed by 

green, yellow and red QDs, respectively. c4 and c5 denote the fraction of green 

photons absorbed by yellow and red QDs, respectively, whereas absorbed 

fraction of yellow photons within the red layer is expressed as c6. By using the 

approximations stated in previous sections, c4, c5 and c6 can be related to c2 and 

c3 as in Equations (5.14)-(5.16). 

4 21 1
y g

y bc c  (5.14) 

5 31 1
r g

r bc c  (5.15) 

6 31 1
r y

r bc c  (5.16) 

where αi(λj) stands for the absorption coefficient of QD layer of color i at the 

peak emission wavelength of Gaussian function emitting in color j. It is 

observed that this assumption does not yield an important deviation from the 

exact value; additionally, it provides simplicity in calculations and speed in 

numerical solutions of the equations by avoiding us dealing with broadband 

spectra. Having four equations that include our known parameters (i.e., Sb, Sg, Sy 

and Sr) gives us enough information to find Sb1, c1, c2 and c3.  

 

The self-absorption (SA) fractions are also included in the calculations; 

however, their mathematical formulation is not as simple as the previous ones. 

The calculation of SA depends on the architecture, the emission wavelength of 

absorbing QDs, the wavelength of the absorbed photons, and the pathway of the 

generated photon (for example, yellow photons generated as a result the 

absorption of blue and green photons have different photon self-absorbing 

fractions). In all of the architectures, c' denotes the fraction of self-absorbed 

photons when propagating upwards whereas c''a denotes the self-absorbed 

fraction of downwards emitted photons. Additionally, c''b expresses the fraction 

of self-absorbed photons while propagating upwards after the reflection of 
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downwards emitted photons. It is here worth mentioning that if all these 

phenomena are calculated by taking a single photon into account, then all these 

aforementioned fractions actually should be thought as probabilities. 

 

Following the absorption of a photon by a QD layer in A, a new photon is 

generated and emitted upwards with a probability of k (1/2) and downwards with 

a probability of 1-k (1/2). Self-absorption of photons occurs within the same QD 

layer, in which they are emitted, with a probability of c'. These photons might be 

reemitted with a probability of η and lost with a probability of 1-η due to non-

radiative recombination. Upwards emitted photons, which are not absorbed by 

the same QD layer, leave the device. On the other hand, downwards emitted 

photons are absorbed within the same QD layer with a probability of c''a, these 

photons are reemitted with a probability of η and lost with a probability of 1-η. 

Photons survived from SA might transfer their energies to other QD layers with 

a probability of ct. Upon the reflection of the survived photons from the bottom 

mirror, there is again a probability of ct to be absorbed by other QD layers. The 

remaining photons have a probability of cb'' being absorbed within the same 

layer that they are emitted. The probabilities of reemission and being lost are η 

and 1-η, respectively. Finally, photons, which survived from SA, leave the 

device with a probability of 1-cb''. These photon transfer processes are illustrated 

in Figure 5.10.     
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Figure 5.10 Illustration of optical mechanisms using system box model for architecture A. 

 

The probabilities of extraction (E), of being transferred to other QD layers 

(T) and of being lost because of SA (L) can be found by solving Equations 

(5.17)-(5.19), which are found using the system box model given in Figure 5.10. 

2
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SA probabilities for photons in a QD layer of color m with an excitation path 

of j are given in Equations (5.20)-(5.22). The bottom of this QD layer 

corresponds to z=0, and its film thickness is zm.   

0

' (1 )
m

m m m

z

z z

mj mjc d z e dz  (5.20) 

0

'' (1 )
m

m m

z

z

mja mjc d z e dz  (5.21) 

'' 1 m m mz

mjbc e  (5.22) 



 67 

where dmj(z) is the normalized excitation profile and correspondingly generated 

photon distribution due to this excitation within the QD layer. The normalization 

is carried out such that the integral between z=0 and z=zm is unity. Green, yellow 

and red photons generated by the excitation of blue photons have a distribution 

of dg0(z), dy0(z) and dr0(z) within green, yellow and red QD layers, respectively. 

The distribution of yellow and red photons within yellow and red QD layers 

pumped by the green photons are given by dyg(z) and drg(z), respectively. The 

distribution of blue photons within green, yellow and red QD layers are given in 

Equation (5.23), where m stands for green (g), yellow (y) or red (r) QDs. m0 is 

the normalization coefficient and b is the peak emission wavelength of blue 

LED. Since blue photons pump QDs from bottom, the number of photons 

decays exponentially. Consequently, QDs excited by blue LED generate photons 

with the same distribution. Therefore, Equation (5.23) actually formulates the 

normalized distribution for photons of color m generated by the excitation of 

blue photons within the QDs emitting in color m. 

m b m bα λ z α λ z

0 m0κ e emd z  (5.23) 

The green photons are distributed within the yellow QD layer as given in 

Equation (5.24). yg is the normalization coefficient, zy is the thickness of the 

yellow QD layer, g is the peak emission wavelength of green QDs and αy is the 

absorption spectrum of yellow QDs. The first summand in Equation (5.24) is the 

distribution of downwards propagating photons, whereas the second one 

expresses the SA after the reflection from the bottom mirror.   

y g y y g y g y

y g

2α λ z z α λ z α λ z z

yg 4 5

2 α λ z

4 5

κ {[e 1 c 1 c e ]e

1 c 1 c e }

ygd z
(5.24) 

 

The distribution of green photons within the red layer is expressed in 

Equation (5.25). rg is the normalization coefficient, zr is the thickness of the red 

QD layer, g is the peak emission wavelength of the green QDs and αr is the 

absorption spectrum of the red QDs. Similar to the distribution of green photons 
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within the yellow QDs, the first summand in Equation (5.25) stands for the 

absorption of downward emitted photons and second one corresponds to their 

self-absorption (SA) within the red QDs after being reflected from the bottom 

mirror.  

r g r r g r g r r gα λ z z α λ z α λ z z α λ z

rg 5 5κ {[e (1 c )e ]e (1 c )e }rgd z (5.25) 

 

Finally, the distribution of the yellow photons within red layer is given in 

Equation (5.26). The same conventions are used, ry stands for the normalization 

coefficient, zr is the thickness of the red QD layer, y and αr denote the peak 

emission wavelength of the yellow QDs and the absorption spectrum of the red 

QDs, respectively. The first and second summands of Equation (5.26) express 

the same absorption mechanisms as in Equation (5.25), but this time yellow 

photons are absorbed instead of green photons.  

r y r r y r y r r yα λ z z α λ z α λ z z α λ z

ry 6 6κ [e (1 c )e ]e (1 c ){ e }ryd z (5.26) 

 

The photon transfer probabilities for green, yellow and red photons are 

formulated as given in Equations (5.27)-(5.29). Equation (5.27) denotes the 

absorption probability of green photons by the yellow and red QD layers and 

Equation (5.28) is the formulation for the probability of yellow photons to be 

absorbed by the red QD layer. 

 
2

4 4 5 4 4 5 4 5 5(1 )(1 ) (1 ) (1 )(1 )t gc c c c c c c c c c (5.27) 

6 6 6(1 )tyc c c c  (5.28) 

0trc  (5.29) 

If the number of blue photons emitted from the blue LED chip is Sb1, then the 

number of generated green photons (Sg0) can be found using Equation (5.30) and 

the number of extracted photons (Sgn) turns out to be as given in Equation (5.31). 

Moreover, the number of yellow photons generated by blue (Sy0) and green (Syg0) 

photons can be calculated using Equations (5.32) and (5.33), respectively. The 

number of extracted yellow photons is given by Equation (5.34). The number of 
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red photons pumped by blue photons (Sr0) is given in Equation (5.35), the 

number of red photons generated by green photons (Srg0) is given in Equation 

(5.36), the number of red photons generated by yellow photons, which are 

generated through pumping of yellow QDs by blue (Sry0) and green (Sryg0) 

photons, are found using Equations (5.37) and (5.38), respectively. Finally, the 

number of extracted red and blue photons (Srn and Sbn) are calculated using 

Equations (5.39) and (5.40), respectively.   

0 1 1 2 31 1g b gS S c c c  (5.30) 

0 0gn g gS S E  (5.31) 

0 1 3 2(1 )y b yS S c c  (5.32)

2

4 4 5 4

0 0 0 2

4 4 5 4 5 4 5 4 5

1 1

(1 ) 1 1 1 1
yg g g y

c c c c
S S T

c c c c c c c c c
(5.33) 

0 0 0yn y y yg ygS S E S E  (5.34) 

0 1 3r b rS S c  (5.35)
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rg g g r
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S S T
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(5.36) 

0 0 0ry y y rS S T  (5.37) 

0 0ryg yg yg rS S T  (5.38) 

0 0 0 0 0rn r r rg rg ry ry ryg ryS S E S E S E S E  (5.39) 

1 1 2 31 1 (1 )bn bS S c c c  (5.40) 

 

As Sbn, Sgn, Syn and Srn are known parameters, Sb1 can be found using 

Equations (5.31), (5.34), (5.39) and (5.40); as a result, the PCE of a QD-WLED 

having the architecture A can be calculated.  
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5.3.1.3 Modeling the Architecture Arev  
 

Reversing the order of QDs does not change the main optical mechanisms; 

therefore, the mathematical notation does not change significantly. The only 

difference between A and Arev is about the probability of photons transferred to 

other QD layers. In A, photons transfer occurs only during the downward 

emission (and after reflection from the bottom mirror). If the QD order is 

reversed, photons can transfer their energies to other QD layers only while 

propagating upwards. Corresponding optical mechanisms are illustrated in 

Figure 5.11 and equations defining the extraction (E), transfer (T) and loss (L) 

probabilities are given by Equations (5.41)-(5.43). The self-absorption 

probability equations are the same as in Equations (5.20)-(5.22). 

 

Figure 5.11 Illustration of optical mechanisms using system boxes for Arev. 
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Because all of the pumping photons come to QDs from their bottom part 

(z=0), they experience an exponential decay as described in Equation (5.44).   

m j m jα λ z α λ z

mjκ e emjd z  (5.44) 

where mj is the normalization constant over the integral from z=0 to z=zm. 

Furthermore, the transfer probability of green photons to other QD layers is 

c4+(1-c4)c5, and the transfer probability of yellow photons to red QD layer is c6. 

Finally, the transfer probability for red photons to another layer is taken as zero.   

 

If the number of blue photons emitted from blue LED is given as Sb1, then the 

number of generated green photons (Sg0) becomes as in Equation (5.45) and the 

number of extracted green photons (Sgn) becomes as in Equation (5.46). 

Similarly, the number of yellow photons generated by blue (Sy0) and green (Syg0) 

photons becomes as in Equations (5.47) and (5.48), respectively. The number of 

yellow photons being extracted is given in Equation (5.49). The number of red 

photons generated through the excitation of blue photons (Sr0) is given in 

Equation (5.50), the number of red photons generated by green photons (Srg0) is 

expressed in Equation (5.51), the number of red photons generated by yellow 

photons, which are generated through pumping of yellow QDs by blue (Sry0) and 

green (Sryg0) photons, is formulated by Equations (5.51) and (5.52), respectively. 

Finally, the number of extracted red and blue photons (Srn and Sbn) are presented 

in Equations (5.54) and (5.55), respectively. 

0 1 1g b gS S c  (5.45) 

0 0gn g gS S E  (5.46) 
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0 0 0ry y y rS S T  (5.52) 

0 0ryg yg yg rS S T  (5.53) 
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1 1 2 31 1 (1 )bn bS S c c c  (5.55) 

 

Since Sbn, Sgn, Syn and Srn are known, the solutions of Equations (5.46), (5.49), 

(5.54) and (5.55) give us Sb1 and the PCE of the simulated QD-WLED in case 

that the quantum efficiencies of the color-converting QDs are available.  

  

5.3.1.4 Modeling the Architecture B  
 

The absorption and emission within a film of QD-blend are different than the 

previous ones. In the previous architectures, photon transfer to other layers 

occurs during upward or downward emissions. However, in blends photon 

absorption occurs during both emission directions. Thus, we changed our 

notation regarding photon transfer by separating photon transfer probabilities to 

other type of QDs for upwards and downwards emission. Furthermore, the blend 

structure is modeled as infinitesimally thin columns of QDs as illustrated in 

Figure 5.9. All of these QD columns have the same thickness in z-direction, zl, 

and the fractional QD densities are introduced to our formulations so that the 

fractions of green QDs (fg), yellow QDs (fy) and red QDs (fr) sum up to unity. 

Then, a photon with a higher photon energy excites the QDs with a probability 
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scaled by the QD-fraction (f); therefore, photon transfer probabilities (or 

fractions) should be scaled accordingly.   

 

The photon transfer mechanisms in the QD-blend are summarized as follows: 

Upon the absorption of a photon within any type of QD, the upwards and 

downwards emission probabilities of the generated photons are k (1/2) and 1-k 

(1/2), respectively. They are absorbed or survived (not absorbed) within the 

same type of QDs with probabilities of c' and 1-c'. The reemission probability of 

the absorbed ones is  and thus 1-  denotes the probability of energy loss due to 

non-radiative recombination. The survived ones from the SA during upwards 

emission are subject to be transferred to other type of QDs with a probability of 

ct'. The ones that are not transferred to other QDs leave the device with a 

probability of 1-ct'. Downwards emitted photons are also subject to SA, this time 

with a probability of ca''; and these photons are either reemitted or lost with 

probabilities of  and 1- , respectively. Photons survived from SA are subject to 

being transferred to other QD layers during downwards emission with a 

probability of cta''. The ones, which are not transferred to other QDs and not 

self-absorbed by the same QD layer, are reflected back. These reflected photons 

can be self-absorbed with a probability of cb''. The probabilities corresponding 

to reemission or being lost are again  and 1- , respectively. The probability 

that photons survive from SA is 1-cb''. These photons might be transferred to 

other QDs with a probability of ctb''. The ones that are not transferred to other 

QDs are extracted from the device. This process has a probability of 1-ctb''. The 

mechanisms explained above are illustrated in Figure 5.12 using the system box 

approach. 

 

The formulations for probabilities of photons being extracted (E), photons 

being transferred to other QDs (T) and photons being lost (L) are given in 

Equations (5.56)-(5.58). 
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Figure 5.12 Illustration of optical mechanisms using system boxes for B. 

 

The SA probabilities are given by Equations (5.59)-(5.61) for upwards and 

downwards (before and after reflection) emission, respectively. 
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where dmj(z) stands for the normalized distribution of photons over the integral 

from 0 to zl. m denotes the color of the QDs; g for green, y for yellow and r for 

red QDs. j stands for the excitation path. The same nomenclature is followed as 

for m. In addition, here 0 means the excitation coming from the pump LED. For 

example, red QDs excited by yellow photons, which are generated through 
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absorption of the first blue photons in green QDs and then through the 

absorption of green photons in yellow QDs, are abbreviated as yg0. Then SA 

probability of upwards emission for this special case becomes c'ryg0. Similarly, 

the distribution of blue photons within green, yellow and red QDs are denoted as 

dg0(z), dy0(z) and dr0(z), respectively. Yellow and red QDs excited by green 

photons have distribution functions of dyg0(z) and drg0(z) within yellow and red 

QD layers, respectively. Finally, the distribution of yellow photons within red 

QDs are dryg0(z) and dry0(z). The first one describes the yellow photon 

distribution within red QDs when yellow photons are generated by the energy 

down-conversion of green photons in yellow QDs. The second one stands for 

the yellow photon distribution function within red QDs when yellow photons are 

generated by the wavelength up-conversion of blue photons in yellow QDs.  

 

The normalized distribution functions of blue photons within green (g), 

yellow (y) and red (r) QDs are given by Equation (5.62), where m is g, y or r, 

m0 is the corresponding normalization coefficient over the integral between z=0 

and z=zl. Furthermore, b is the peak emission wavelength of blue LED.   

m b m bα λ z α λ z

0 m0κ e emd z  (5.62) 

The normalized distribution of green photons within yellow QDs is given by 

Equation (5.63) where yg0 is the normalization constant. This distribution 

depends on the distribution of green photons. Additionally, it contains the 

distribution of green photons in yellow QDs while propagating upwards and 

downwards, denoted in the first and second summands of Equation (5.63), 

respectively. Furthermore, it includes terms for the distribution of green photons 

within yellow QDs, which are not absorbed by green, yellow and red QDs 

during downward emission but absorbed in yellow QDs after the reflection from 

the bottom mirror, as expressed in the third, fourth and fifth summands of 

Equation (5.63), respectively. 
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(5.63) 

The normalized distribution of green photons within red QDs is very similar 

to the previous case and given in Equation (5.64), where rg0 is the 

normalization constant. As in the previous equation, this distribution is strongly 

dependent on the distribution of green photons. Furthermore, it contains the 

distribution of green photons absorbed in red QDs while propagating upwards 

and downwards, expressed in the first and second summands of Equation (5.64), 

respectively. In addition, the distribution of green photons within red QDs, 

which are not absorbed by green, yellow and red QDs during downward 

emission but absorbed in red QDs after reflection from the bottom of the device 

are expressed in the third, fourth and fifth summands of Equation (5.64). 
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(5.64) 

 

The distribution of yellow photons generated by the blue photons coming 

from the LED chip within red QDs has also a similar behavior, and it is given in 

Equation (5.65). Again ry0 is the normalization constant, and the distribution is 

scaled with dy0(z). It depends also on the distribution of yellow photons absorbed 

in red QDs while propagating upwards and downwards, as the first and second 

summands of Equation (5.65)present, respectively. In addition, the distribution 

function of yellow photons within red QDs, which are not absorbed by yellow 

and red QDs during downward emission but absorbed in red QDs after reflection 
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from the bottom of the device, are expressed in the third and fourth summands 

of Equation (5.65). 
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(5.65) 

The distribution of yellow photons, which are generated through the pumping 

of yellow QDs by green photons, within red QDs is almost identical to Equation 

(5.66). In this case, the distribution is scaled by dyg0(z) instead of dg0(z) and a 

new normalization coefficient, ryg0, is introduced. The final form of the 

expression is given in Equation (5.66). 
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(5.66) 

The photons emitted by the green QDs can be absorbed by yellow and green 

QDs. These photon transfer probabilities for upwards emission, and downward 

emission before and after the reflection from the bottom of the device are given 

in Equations (5.67)-(5.69), respectively. 

( ) ( )
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0 0 0
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z z
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0'' 1 (1 )r g l r y lz z

tg b r yc f e f e (5.69) 

The yellow photons can be transferred to red QDs as well. These transfer 

probabilities for upwards propagating, downwards propagating (before and after 

the reflection) from the bottom mirror are given in Equations (5.70)-(5.72) for 

the case of yellow QDs pumped by the blue photons and in Equations (5.73)-
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(5.75) for the case of yellow QDs pumped by green photons. Finally, it should 

be noted that all the transfer probabilities of red photons are zero.   
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Before expressing the equations of final photon numbers, finding the ratio of 

the green photons being transferred to yellow (ty) and red (tr) QDs to the total 

fraction of transferred green photons will make equations easier to follow. Those 

expressions are given in Equations (5.76) and (5.77), respectively. 
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t

k c c c k c c c k c c c c c
(5.76) 

1r yt t  (5.77) 

where cy' and cr' denote the absorption probability of green photons by yellow 

and red QDs during upward emission, respectively. cy'' and cr'' are the 

probabilities of photon transfer to yellow and red QDs during downward 

emission before getting reflected from the bottom of the device, respectively. 

The probabilities for both type of QDs after the reflection become c''yb and c''rb. 

Expressions for these probabilities are given in Equations (5.78)-(5.83). 
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The number of generated green, yellow and red photons by blue photons (Sg0, 

Sy0, Sr0) are given in Equations (5.84)-(5.86) and the number of green photons 

being extracted (Sgn) is given in Equation (5.87). Then, the number of yellow 

and red photons generated by green photons (Syg0 and Srg0) can be found using 

the Equations (5.88) and (5.89), respectively. The number of yellow photons 

that successfully out-couple (Syn) can be found using Equation (5.90). 

Furthermore, the number of red photons generated by yellow photons, which are 

generated through excitation of yellow QDs by blue (Sry0) and green (Sryg0) 

photons, are given in Equations (5.91) and (5.92), respectively. Finally the 

number of red and blue photons that are out coupled (Srn and Sbn) are given in 

Equations (5.93) and (5.94), respectively. 

0 1 1 g b lz
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0 0gn g gS S E  (5.87) 

0 0 0yg y g g yS S T t  (5.88) 

0 0 0rg r g g rS S T t  (5.89) 

0 0 0 0yn y y yg ygS S E S E  (5.90) 

0 0 0ry y y rS S T  (5.91) 
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0 0 0ryg yg yg rS S T         (5.92) 

0 0 0 0 0 0 0 0rn r r rg rg ry ry ryg rygS S E S E S E S E     (5.93) 

1
g b l y b l r b lz z z

bn b g y rS S f e f e f e  (5.94) 

Since Sbn, Sgn, Syn and Srn are known, by solving Equations (5.87), (5.90), 

(5.93) and (5.94) for Sb1, the power conversion efficiency of QD-WLED can be 

calculated given the quantum efficiencies of QDs ( ). 

 

5.3.2 Analyses 
 

 

 

 

 

 

We start our analyses with PCE and LE for the ideal case of 100% quantum 

efficiency ( ) of QDs. As given in Table 5.3, only the Stoke‟s shift causes a loss 

of at least 15% of the optical power for the photometrically efficient spectra 

satisfying CRI ≥ 90 and LER ≥ 380 lm/Wopt in all of the architectures. This 

corresponds to a maximum LE of 326.6 lm/Welect. If a realistic blue LED having 

a reported PCE of 81.3% is taken into account, the maximum achievable PCE 

drops to 69% and the maximum LE decreases to 265.5 lm/Welect. These results 

show that QD-WLEDs have the potential to surpass the ultra-efficiency 

limitations stated in Ref. 83
 
in case that high extraction efficiencies and high 

PCE of blue LEDs are realized.  

 

 max. min. aver. st. dev. 

PCE (%)  

(excluding PCE of blue LED) 

84.9 78.4 81.6 1.2 

LE (lm/Welect)  

(including PCE of blue LED) 

265.5 242.3 254.2 4.1 

Table 5.3 Maximum, minimum, average and standard deviation of PCE (excluding PCE of 

blue LED) and LE (including PCE of blue LED) for the photometrically efficient spectra.    
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A further investigation is carried out for finding out the effect of color 

conversion architectures and quantum efficiencies on LE. Here we fixed the 

quantum efficiencies of the two QD-WLED architectures and then computed 

their corresponding LEs and PCEs (Table 5.4 and 5.5). We found out that the 

layered QDs in architecture A perform better compared to the blend of QDs in 

architecture B. Furthermore, LE and PCE are observed to have very narrow 

standard deviation for photometrically efficient spectra considered in these 

models. In addition, we observed that the self-absorption (SA) of the photons 

(for example, absorption of green photons by green QDs) increases the standard 

deviation of both LE and PCE. Moreover, reversing the order of the QD layers 

in A results in a worse performance compared to A and B.  

Architecture 

 = 80 %  = 50 %  = 20 % 

max. min. aver. st. 

dev. 

max. min. aver. st. 

dev. 

max. min. aver. st. 

dev 

A without 
SA 

213.1 190.5 201.6 4.1 133.9 116.3 124.0 3.3 53.7 44.8 48.6 1.6 

A with SA 209.4 182.7 195.3 4.9 127.2 99.3 112.3 5.2 48.3 30.3 38.7 3.5 
B 203.6 176.7 188.8 4.9 115.3 93.2 102.1 4.0 38.7 29.4 33.6 1.6 

A without 
SA – A w. 

SA 

12.2 2.8 6.4 1.9 21.3 5.3 11.7 3.6 16.7 4.2 9.9 2.9 

A w. SA – B 9.9 3.5 6.5 1.1 16.0 3.5 10.2 2.6 12.4 0.2 5.1 2.7 

Table 5.4 Maximum, minimum, average and standard deviation of LE (including PCE of 

blue LED) in lm/Welect for the photometrically efficient spectra at QD’s  = 80%, 50% and 

20% for two different architectures: A and B. The effect of self-absorption (SA) is also 

investigated for architecture A. 

Architecture  = 80 %  = 50 %  = 20 % 

max min aver st. 
dev 

max min aver st. 
dev 

max min aver st. 
dev 

A without SA 68.4 61.7 64.7 1.2 42.9 37.4 39.8 1.0 17.2 14.4 15.6 0.5 

A w. SA 67.3 59.0 62.7 1.5 41.1 31.9 36.0 1.7 15.6 9.7 12.4 1.1 

B 65.2 57.1 60.6 1.5 37.2 30.0 32.8 1.3 12.4 9.4 10.8 0.5 

A without SA 

- A w. SA 

3.8 0.9 2.0 0.6 6.6 1.7 3.7 1.1 5.3 1.3 3.2 0.9 

A w. SA – B 3.2 1.1 2.1 0.4 5.1 1.1 3.3 0.8 4.0 0.1 1.7 0.9 

Table 5.5 Maximum, minimum, average and standard deviation of PCE (excluding PCE of 

blue LED) in percentages for the photometrically efficient spectra at  = 80%, 50% and 

20% for two different architectures. The effect of self-absorption (SA) is also investigated 

for architecture A. 

Another analysis has been carried out to find the minimum  values for 

limiting LEs (with PCE of the blue LED taken as 81.3%) assuming the same 

quantum efficiency for all of the QD layers. Our results showed that, to obtain 
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an LE of 100 lm/Welect, the quantum efficiencies of QDs should be at least 39% 

and 44% in the color conversion film for A and B, respectively. In order to 

achieve an LE of 150 lm/Welect,  should be at least 58% and 62% in the film for 

A and B, respectively. Increasing this LE limit to 200 lm/Welect, increases the 

quantum efficiency limits to 76% and 78% in the film for A and B, respectively.    

 

We further investigated the transfer of photons in A and B at =100% and 

=50%. The results are presented in Figure 5.13 and 5.14, respectively. When 

=100%, most of the blue photons are absorbed within the red layer in both of 

the architectures. The second most absorbing layer for blue photons is the 

yellow QD layer in A. For the blend case, green and yellow QDs absorb almost 

the same number of blue photons. As opposed to blue photons, however, most of 

the green photons are extracted without being absorbed. When it comes to the 

transfer of the yellow photons, we find out that they are mostly extracted and a 

small amount is absorbed within red QDs. Moreover, the number of yellow 

photons transferred to red QD layer turns out to be higher in B compared to A. In 

the case of =50% for A, no significant change occurs in photon transfer 

behaviors. An important point is that still ca. 50% of the green photons manage 

to leave the device in spite of the self-absorption. However, some changes occur 

in the transfer of blue and green photons within B. In this architecture, we 

observe that all of the transferred amounts of green photons are similar to each 

other as opposed to the case of =100%. One interesting point is that most of the 

blue photons are transferred to yellow QDs in the case of =50%; however, blue 

photons are absorbed mostly by the red QDs if  is 100%. 
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Figure 5.13 Fraction of blue photons transferred to green QDs (bg), to yellow QDs (by), to 

red QDs (br), and being extracted (be); fraction of green photons self-absorbed (gg), 

transferred to yellow QDs (gy), to red QDs (gr), and being extracted (ge); fraction of yellow 

photons self-absorbed (yy), transferred to red QDs (yr), and being extracted (ye); fraction 

of red photons self-absorbed (rr) and being extracted (re) in A and B at =100%. 

 

Figure 5.14 Fraction of blue photons transferred to green QDs (bg), to yellow QDs (by), to 

red QDs (br), and being extracted (be); fraction of green photons self-absorbed (gg), 

transferred to yellow QDs (gy), to red QDs (gr), and being extracted (ge); fraction of yellow 

photons self-absorbed (yy), transferred to red QDs (yr), and being extracted (ye); fraction 

of red photons self-absorbed (rr) and being extracted (re) in A and B at =50%. 

 

We investigated the effect of quantum efficiency change of QDs in different 

architectures. For this purpose, we fixed the efficiencies of two of the QD types 

and changed the efficiency of the remaining one between 20% and 100%. As 

test designs, spectra that lead to the highest PCE when three  values are equal 
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are selected. For =100%, the red component effects PCE and LE of the device 

more severely compared to other components in all architectures. When  is 

fixed at 80%, PCE and LE beecome most sensitive to the efficiency changes of 

red QDs both in A and B. Fixing  at 50% does not change the behavior stated 

for =80% case. Further decrease of  to 20% makes the change in QD 

efficiency of green layers to be the most effective one for both of the 

architectures. 

 

We also investigated whether the change of the quantum efficiency affects 

the spectral content by calculating the average peak emission wavelength, full-

width at half-maximum, and relative amplitudes of every color component of the 

spectra having PCE larger than the average of PCEs at that quantum efficiency. 

We did not observe any significant change in the spectral content as  changes. 

Corresponding values can be found in Table 5.6. 

 

Architecture QD 100% 80% 50% 20% 

A b, g, y, r (nm) 470.5, 531.6, 

569.2, 620.3 

469.9, 533.3, 

570.0, 620.1 

469.3, 530.4, 

567.2, 620.2 

469.9, 530.8, 

568.1, 620.2 

b, g, 

y, r (nm) 

43.4, 41.6, 

42.8, 33.4 

42.8, 42.2, 

43.2, 33.2 

43.4, 39.9, 

43.8, 33.2 

44.2, 40.3, 

43.3, 32.8 

ab, ag, ay, ar 

(/1000) 

105.0, 215.3, 

186.5,493.2 

107.1, 214.1, 

175.7, 503.1 

106.0, 201.5, 

196.9, 495.6 

105.8, 207.2, 

193.4, 493.6 

B b, g, y, r (nm) 470.5, 531.6, 

569.2, 620.3 

469.7, 534.1, 

570.5, 620.0 

469.0, 526.8, 

563.3, 620.0 

469.9, 531.1, 

568.7, 620.3 

b, g, 

y, r (nm) 

43.4, 41.6, 

42.8, 33.4 

42.1, 42.9, 

42.9, 33.4 

41.9, 38.0, 

45.3, 33.2 

44.1, 40.6, 

42.9, 32.9 

ab, ag, ay, ar 

(/1000) 

105.0, 215.3, 

186.5, 493.2 

107.4, 216.1, 

169.8, 506.8 

106.1, 176.9, 

220.2, 496.8 

105.5, 211.6, 

191.8, 491.2 

Table 5.6 Average of the spectral parameters belonging to the computed spectra whose 

PCE is larger than the average of the PCEs of the photometrically efficient spectra in A 

and B at varying quantum efficiencies. i: peak emission wavelength, Δ i: full-width at 

half-maximum, ai: weight of the color component i. i is either blue (b), green (g), yellow (y) 

or red (r). 

 

To verify the results of our computational model with real LEDs, we used the 

QD-WLED given in Ref. 11. This LED features an LE of 41 lm/Welect. Our 

calculated LE result is ca. 75 lm/Welect. This corresponds to an extraction 

efficiency of slightly larger than 50%, which is comparable to the extraction 

efficiencies of silicone encapsulated LEDs. As a result, this shows that our 
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modeling is in agreement with the performance of real devices and estimations 

based on these models are consistent proving the starting assumptions to make 

calculations possible are reasonable.  

 

In conclusion, in this work we developed models to study the power 

conversion efficiency and luminous efficiency of QD integrated white LEDs. 

Using these models we investigated the effect of quantum efficiency change on 

PCE and LE. Furthermore, we found out that QD-WLEDs can be more efficient 

than phosphor based white LEDs both photometrically and electrically when 

high enough quantum efficiency of QDs and LEDs together with high extraction 

efficiencies are realized. In addition to these, we also found that placing red, 

yellow and green QD layers on blue LED (architecture A) is the most efficient 

one for color conversion QD-WLEDs compared to the QD blends (architecture 

B).   
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Chapter 6 
 

 

Efficient White LEDs for Outdoor 

Lighting using Quantum Dot 

Nanophosphors 

 

 

 

6.1 Spectral Recommendations for White Light 

Emitting Diodes with High Scotopic-to-Photopic 

Efficiency Ratio 
 

 

 

 

 

 

 

This section is based in part on the publication “Computational analyses of 

white LEDs exhibiting high color rendition and high scotopic/photopic efficacy 

ratio for outdoor lighting applications” T. Erdem, S. Nizamoglu, X. W. Sun, and 

H. V. Demir, in submission. 

 

The performance of white light generation can be photometrically evaluated by 

using different quantitative criteria. For the purpose of outdoor lighting, one of 

the most important figure-of-merits is the ratio of luminous efficacy of optical 

radiation in scotopic (dark adapted) vision to that of photopic (photon adapted) 

vision, the S/P ratio. This criterion takes into account the response of both rod 

and cone photoreceptors, which are responsible for scotopic and photopic 

modes, respectively. The difference between the photopic and scotopic vision 

results from the fact that the sensitivity of the human eye changes with the level 

of luminance. While the human eye is the most sensitive at 555 nm at high 



 87 

luminance values (>5 cd/m
2
), its sensitivity peak shifts to 507 nm at low 

luminance (<0.005cd/m
2
) and rods begin to dominate the vision instead of cones 

[30]. This shift is called the Purkinje shift and S/P ratio signifies the effect of 

this shift in the human vision. The resulting value determines the capability of 

light source to provide better perceived brightness and better visual acuity [101]. 

Sources having higher S/P ratios provide better vision under low optical power 

levels compared to other sources with lower S/P ratios. Therefore, in the case 

that the optical power of two sources is the same, the one exhibiting higher S/P 

ratio yields better lighting. If we consider outdoor lighting in particular, we find 

out that it is technically (and economically) difficult to maintain high level of 

luminance at all points of targeted illumination area and that light sources with 

higher S/P ratios are thus of further importance for better illumination to 

enhance vision and road safety at night, effectively increasing the quality of life. 

Here we investigated S/P ratio performance for targeted levels higher than 2.50 

so that we can achieve better performance than standard daylight source D65, 

which has an S/P ratio of 2.47, and those of typical white LEDs commonly 

below the S/P barrier of 2.50.  

 

Another important indicator of high-quality white light generation is the color 

rendering property. A light source having high color rendering should reflect the 

real colors of illuminated objects as much as possible. The standard measure of 

this property is the color rendering index (CRI) developed by Commission 

Internationale de l‟Eclairage (CIE). However, CRI has important shortcomings 

at cool correlated color temperatures (CCTs) in the case that the color of the 

white light source becomes bluish tint and CCT increases [7]. Since high S/P 

ratios require significant amount of blue-green color content to match the 

Purkinje shift, CCT increases and falls into cool white region while S/P ratio 

increases and CRI cannot be used as a measure of color rendering in this case. 

Instead, it is possible to use color quality scale (CQS), recently developed by 

Davis and Ohno [102], which determines the color rendering quality of light 

sources at all color temperatures. Because this metric takes the effect of high 
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CCTs into account, it relies on more test sources to give better rendering 

information and penalizes the sources for chromatic saturation. Furthermore, the 

computation method is similar to that of CRI; consequently, comparison and 

interpretation of the resulting values is conveniently straightforward. The 

highest possible value of CQS is set to 100, whereas the worst CQS is 0. Here 

we computationally investigated different cases of CQS for various targeted 

levels higher than 70, 80 and 90 to indicate correspondingly good to excellent 

levels of color rendering while keeping track of the evolution of S/P ratio, LER 

and CCT for the first time. 

 

To satisfy high-quality lighting requirements, the emission spectra of light 

sources should be designed very carefully. For this purpose, combinations of 

narrow band emitters such as quantum dot nanophosphors (QDs) provide a great 

benefit of tuneability, one by which their white light sources can be precisely 

controlled to confer the luminous efficacy high while the color rendering is 

simultaneously made almost perfect [86,90]. In our previous work, we evaluated 

such photometric performance with high CRI and high LER at warm CCTs [90], 

which is for indoor lighting, excluding the study of S/P ratio and CQS unlike in 

this work.  Here, different than the previous works of our group and others, 

specifically for outdoor lighting, we show that high S/P values (>2.50) can also 

be achieved in principle using these narrow band emitting nanoluminophors, 

while maintaining an excellent level of color rendering with high CQS (>90).  

 

6.1.1 Computational Approach 
 

 

 

 

 

 

The photometric performances of QD-WLEDs are evaluated from a 

computational point of view.  The emission spectra of the narrow band emitters 

are modeled as a Gaussian function. Although the radiation of a monochromatic 

LED is not perfectly Gaussian, one can safely treat it as a Gaussian or sum of 
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Gaussians [83]. While generating white light, the critical point is that we need 

three or more color components to obtain superior photometric properties. In our 

numerical simulations, the blue peak emission wavelengths are examined in the 

range from 425 to 445 nm with a step size of 5 nm and 450 to 490 nm with a 10 

nm step size. Green emission is modeled with peak emissions at 500, 505, 510, 

530, 530 and 540 nm. Central wavelengths of yellow and red components are 

changed from 550 to 590 nm and from 600 to 640 nm, both with a step size of 

10 nm, respectively. Furthermore, the full-width at half-maximum (FWHM) of 

each Gaussian is varied from 30 to 54 nm with a step size of 6 nm. Additionally, 

the amplitudes of each color component are altered between 0 and 4 units. 

Subsequently, normalization of the sum of amplitudes is carried out to compare 

their results with each other. Resultantly, 495,937,500 WLED designs are 

modeled and photometrically computed. 

 

The luminous efficacy of optical radiation in photopic (LER) and scotopic 

(SLER) regimes, and their S/P ratio are computed using Equation (2.54). CQS 

levels are calculated as described in Chapter 2. The CCT values up to 21,000 K 

are obtained directly by calculating the temperature of the closest Planckian 

blackbody radiator in the (u,v) color space. To increase computation speed, 

CCTs larger than 21,000 K are computed using the approximation given in Ref. 

92. To consider high S/P ratios, we limit our computational design pool only to 

the cases with S/P ratios larger than 2.50. Moreover, the cases of bad color 

rendering (CQS <70) and low luminous efficacy of optical radiation (LER <250 

lm/Wopt) are excluded in our analyses. Furthermore, the analyses of CQS larger 

than 80 and 90 are separately studied to understand the spectral requirements for 

two separate restriction levels of high color rendering.  
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6.1.2 Computational Analyses 
 

 

 

 

 

6.1.2.1 Input Independent Analysis 
 

 

 

Our computations return only 2.7% of the generated designs that achieve CQS 

≥70 together with the restrictions of S/P ≥2.50 and LER ≥250 lm/Wopt. 

Increasing the color rendering limit results in even fewer designs that surpass 

these restrictions. For the case of CQS ≥80, only 0.86% of the modeled designs 

satisfy the conditions. Increasing CQS limit further to 90 decreases this fraction 

down to 0.067%. All of these findings show that high-efficiency and good color 

rendering of a light source cannot be achieved by arbitrarily selecting the 

spectra; instead, the source spectrum needs to be carefully designed. 

 

According to the simulation results, the highest CQS is found to be 98.28 

together with an S/P ratio of 2.55, an LER of 281 lm/Wopt and a CCT of 6,991 

K. For the case of CQS ≥ 70, the highest LER is obtained at 386 lm/Wopt (while 

S/P=2.51, CQS=70.24 and CCT=7,197 K). This value decreases to 359 lm/Wopt 

(while S/P=2.50, CQS=80.30 and CCT=6,928 K) for CQS ≥80. Further 

increasing CQS limit to 90 decreases the maximum possible LER down to 330 

lm/Wopt (while S/P=2.51, CQS=90.39 and CCT=7,115 K). Another important 

criterion for high performance is the S/P ratio for our purposes. This metric also 

follows a decreasing trend upon increasing the CQS limit as in the case of LER. 

For CQS ≥70, the highest S/P ratio is 4.19 (while CQS=70.84, CCT=42,815 K 

and LER=252 lm/Wopt). When the CQS limit is set to 80, the highest possible 

S/P ratio decreases to 3.92 (while CQS=81.69, CCT=54,310 K and LER=250 

lm/Wopt). When the CQS restriction is finally raised to 90, the highest possible 

S/P ratio drops to 3.57 (while CQS=90.27, CCT=38,527 K and LER=251 

lm/Wopt). As another performance metric, CCT is investigated as well. The 

minimum CCT (corresponding to the warmest white light) is obtained at 2,728 
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K (while CQS=70.50, S/P=2.51 and LER=251 lm/Wopt) when CQS ≥ 70 limit is 

applied. Further raising CQS limit increases the minimum possible CCT. For 

CQS ≥80, the lowest CCT becomes 3,068 K (while CQS=80.81, S/P=2.50 and 

LER=250 lm/Wopt) and for CQS ≥ 90, this increases to 5,004 K (while 

CQS=90.80, S/P=2.50 and LER=264 lm/Wopt).     

 

In this work, we also investigated the fundamental relation and tradeoffs 

between these photometric figure-of-merits. The investigated combinations of 

boundary performance includes LER vs. S/P ratio, CQS vs. S/P ratio, CQS vs. 

LER, CCT vs. LER, CCT vs. CQS and CCT vs. S/P ratio, which are shown in 

Figure 6.1(a)-(f), respectively. The relation of LER vs. S/P ratio is analyzed for 

three CQS restrictions, namely CQS ≥ 70, 80 and 90. As given in Figure 6.1(a), 

these boundaries follow a decreasing behavior, indicated by the three iso-CQS 

curves, each one corresponding to one of the CQS restriction levels that increase 

in order outwards. CQS vs. S/P ratio is presented in Figure 6.1(b). Investigation 

of the computational data building up the boundary performance reveals that this 

curve represents the tradeoff between CQS and S/P ratio up to S/P=3.20. After 

this value, however, it becomes an iso-LER curve, restricted to LER=250 

lm/Wopt in this case. The relation of CQS vs. LER is given in Figure 6.1(c). This 

shows a fundamental tradeoff between CQS and LER up to LER=290 lm/Wopt. 

After this point, we observe a decreasing behavior corresponding to the iso-S/P 

ratio curve for S/P=2.50 restriction. Figure 6.1(d) shows the relationship 

between CCT and LER. This boundary performance graph exhibits an 

increasing trend, which is shaped by both CQS=70 and S/P=2.50 limitations. 

Figure 6.1(e) presents the relation of CCT vs. CQS. The investigation of their 

data shows that restrictions are effective until CQS=85, S/P=2.50 and LER=250 

lm/Wopt. After this value, we observe an iso-S/P ratio curve corresponding to 

S/P=2.50. Finally, the behavior of CCT vs. S/P ratio is investigated, which is 

depicted in Figure 6.1(f). This relation has an increasing trend upon increasing 

S/P ratio because blue-green content increases in the spectrum for obtaining 
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high S/P ratio. Investigation of the corresponding data reveals that this curve is 

shaped by both CQS=70 and LER=250 lm/Wopt limitations.  

 

 

Figure 6.1 Relation and tradeoffs between (a) LER vs. S/P ratio, (b) CQS vs. S/P ratio, (c) 

CQS vs. LER, (d) CCT vs. LER, (e) CCT vs. CQS, and (f) CCT vs. S/P ratio. 

 

6.1.2.2 Input Dependent Analysis 
 

 

 

- -

 namely, blue, green, yellow and red. 

Here the analysis is carried out by investigating the average and standard 

deviation (stdev) of every input parameter. The results are separated into three 

groups. All of the groups satisfy S/P ratio ≥2.50 and LER ≥250 lm/Wopt. Their 
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difference comes from the distinct restrictions of CQS ≥70, 80 and 90. The 

resulting cases satisfying the corresponding conditions are summarized in Table 

6.1. 

  CQS ≥ 70 CQS ≥ 80 CQS ≥ 90 

Input 

Parameters 

Colors Average Standard 

Deviation 

Average Standard 

Deviation 

Average Standard 

Deviation 

Peak 

Emission 

Wavelength 

(nm) 

Blue 451.06 13.75 449.66 11.29 447.69 7.78 

Green 513.09 11.35 512.98 11.17 509.69 9.07 

Yellow 566.55 14.15 565.34 13.41 564.86 11.23 

Red 621.82 13.24 623.33 11.93 625.47 9.94 

FWHM 

(nm) 

Blue 43.48 8.31 44.02 8.15 45.01 7.88 

Green 43.76 8.34 43.84 8.38 44.09 8.38 

Yellow 41.79 8.52 41.98 8.53 42.51 8.51 

Red 41.27 8.46 41.54 8.47 42.01 8.47 

Relative 

Amplitude 

(/1000) 

Blue 323.77 79.68 329.22 68.77 322.40 53.07 

Green 294.03 91.64 272.57 74.18 254.70 44.36 

Yellow 169.93 92.36 173.71 81.15 196.27 50.44 

Red 212.45 83.54 224.73 68.05 226.95 47.94 

Table 6.1 Average and standard deviation of the input parameters satisfying the conditions 

S/P ratio ≥2.50, LER ≥250 lm/Wopt and CQS ≥70, 80 and 90. 

 

6.1.2.2.1 Analysis of Peak Emission Wavelengths 
 

 

As presented in Table 6.1, the emission wavelengths should be selected within a 

relatively narrow band for all of the color components and CQS limitations. For 

blue, the average wavelength comes out to be 451.06 nm with a stdev of 13.75 

nm when CQS ≥70 restriction is applied. Increasing the CQS limitation to 90 

results in narrowing the stdev to 7.78 nm and consequently a small blue-shift is 

observed in the average value from 451.06 to 447.69 nm. An almost identical 

behavior is observed for all of the other three color components. The average 

peak emission wavelengths shift from 513.09 nm, 566.55 nm and 621.82 nm to 

509.69 nm, 564.86 nm and 625.47 nm upon application of CQS ≥90 limit, for 

green, yellow and red components, respectively. Following this blue-shift, the 

stdev values also become smaller for all of the color components. Conclusively, 
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we can state that the selection of peak emission wavelengths is important for 

obtaining good performance in outdoor lighting. From the fact that the shift of 

wavelengths is very small for stricter color rendering limitations, we can 

conclude that the choice of wavelengths is more effective on the S/P ratio and 

LER performance than on the CQS performance. 

 

6.1.2.2.2 Analysis of FWHMs 

 

According to Table 6.1, the design of FWHMs follows a different trend than that 

of peak emission wavelengths. As opposed to the previous case, investigation of 

the color components reveals that the FWHM values are not as critical for the 

generation of white light with high S/P ratio and good color rendering as the 

peak wavelengths (Table 6.1). For all of the color cases, the average FWHM 

values are around 43 nm. More importantly, the values of FWHMs can be 

selected within a relatively large interval as it can be understood from the large 

stdev values (around 8.1 nm) for all of the color components. In addition, we 

observe that stdev does not change significantly although CQS limit is made 

stricter. Furthermore, a very small increase in the FWHM is found out upon 

raising the color rendering limitation. Therefore, we can claim that the choice of 

FWHMs is not as effective within this range as other parameters for obtaining 

high optical performance as long as the peak emission wavelengths and relative 

amplitudes are set right.  

 

6.1.2.2.3 Analysis of Relative Amplitudes 

 

The analysis of the relative amplitudes gives important information about the 

requirements for high optical performance of outdoor lighting. As given in Table 

6.1, the amplitude of the blue component should be selected around 323/1000. 

The decrease of the stdev from 79.68/1000 to 53.07/1000 for large CQS limit 

shows that obtaining good color rendition is strongly dependent on the choice of 

amplitude of blue component. We observe a similar behavior for other color 

components as well; stdev values decrease significantly in the case of higher 
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CQS. This finding shows that the choice of relative amplitude is very critical for 

good color rendition. Additionally, we observe some changes in the average 

values of relative amplitudes upon increasing CQS restriction. However, these 

changes are very small; as a result, we can recommend that the relative 

amplitudes should be chosen between 255/1000-290/1000, 170/1000-195/1000 

and 210/1000-225/1000 for green, yellow and red color components to obtain 

high color rendering and high-efficiency in scotopic vision.  

 

6.1.3 Spectral recommendations for highly efficient 

outdoor lighting using white LEDs 
 
 

To make conclusive spectral recommendations for outdoor lighting, we examine 

the photometric performance of average spectra for every color rendering 

restriction. Corresponding spectral distributions can be found in Figure 6.2 and 

input parameters are given in Table 6.1. The average spectrum exhibits a color 

operating point (color chromaticity) at x=0.2866 and y=0.3108, and yields 

LER=284.21 lm/Wopt, S/P ratio=2.80, CQS=92.87 and CCT=8,506 K when 

CQS ≥70 limitation is applied. Increasing the CQS limitation to 80 changes the 

performance of the spectrum created using average values. The resulting figure-

of-merits are LER=277.98 lm/Wopt, S/P ratio=2.74, CQS=94.50 and CCT=8,461 

K. The corresponding color is located at x=0.2897 and y=0.3042 on the 

chromaticity diagram. Further increasing the CQS limit to 90 changes the 

coordinates of the color to x=0.2905 and y=0.2893. The resulting performance is 

LER=262.52 lm/Wopt, S/P ratio=2.80, CQS=95.63 and CCT=8,907 K. By 

comparing these three sets of performance, we can state that all of them lead to 

really good outdoor lighting. However, here we can accept the best performance 

is obtained with excellent color rendering of CQS ≥90, accompanied with high 

S/P ratio reaching 2.80. The corresponding wavelengths for this spectrum are 

447.69, 509.69, 564.86, and 625.47 nm for blue, green, yellow, and red, 

respectively. The FWHM values are 45.01, 44.09, 42.51, and 42.01 nm; and 
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relative amplitudes are 322.40/1000, 254.70/1000, 196.27/1000, and 

226.95/1000 from blue to red color components, respectively. 

 

Figure 6.2 White LED designs with input parameters modeled for CQS ≥70, 80 and 90 

restrictions in order. All of these WLED designs satisfy S/P ratio ≥2.50 and LER ≥250 

lm/Wopt.   

 

Here we presented the results of our computational analyses of white LEDs 

for outdoor lighting. High-quality lighting is critical for street lighting. This is 

important both for energy saving and safety issues. We demonstrated that high 

S/P >2.50 can be achieved in principle using narrow band emitting quantum dot 

nanoluminophors, while also reaching an excellent level of color rendering of 

CQS >90. Additionally, we studied and evaluated the relationship of S/P ratio, 

color quality scale, luminous efficiency of optical radiation and correlated color 

temperature with each other, by modeling and computing the photometric 

performance of over 495 million QD-LED designs. Moreover, we investigated 

the input requirements (peak emission wavelengths, FWHMs, and relative 

amplitudes) of high-quality white light generation for the purposes of outdoor 

lighting.  

 

Finally, we provided spectral recommendations for color conversion LEDs 

using quantum dot nanoluminophors that exhibit almost perfect color rendition 

and an S/P ratio exceeding by far those of the standard daylight source (D65) 

and typical white LEDs. The results of this work might in general be applied to 

multichip white LEDs as well. Such high-quality LEDs that are specifically 
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designed for outdoor lighting are essential for future high-efficiency street 

lighting.  

6.2 Experimental Demonstration of high S/P QD-

WLEDs 
 

 

 

 

 

 

 

There are still continuing debates on the implications of high S/P ratio. 

Regardless of these discussions, however, there have been no reports on a light 

source that achieves a high S/P ratio together with good color rendition 

properties. It is basically because of the trade-off between both of the 

performance metrics mentioned in the previous section. In this part of the thesis, 

we report the first demonstration of a QD-LED having a high S/P ratio and a 

relatively good color rendition [103]. The emission spectra of the common white 

light sources reveal S/P ratios between 0.80 to 2.50 [104]. An incandescent 

lamp, which has a CRI of 100, has an S/P ratio of 1.41 [103]. S/P ratios of 

phosphor based white LEDs vary between 1.68 and 2.38 [9,105]. 

 

To obtain a QD-LED having a high S/P ratio together with a reasonable CRI, 

our approach has been to mimic the blackbody radiator spectra having high 

color temperatures. Since blue and cyan color components raise the color 

temperatures and S/P ratios, we made use of a blue LED and QDs emitting in 

cyan. In addition, integration of green, yellow and red QDs are added as they 

help to obtain a good CRI. 

 

The blue LED chip that we used is an InGaN/GaN quantum well based LED 

emitting at 452 nm. Furthermore, we used CdSe/ZnS core/shell QDs dissolved 

in toluene emitting at 490 (cyan), 540 (green), 580 (yellow) and 620 nm (red). 

We used 119.7 nmol of cyan, 4.652 nmol of green, 0.990 nmol of yellow and 

0.158 nmol of red QDs in our QD-WLED. At 25 mA of current level, we 
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obtained white light emission corresponding to the chromaticity coordinates of 

(0.251,0.246) and a CRI of 71.7. The S/P of this device turned out to be 3.41 at 

CCT of 45,000 K. As CRI might give inaccurate information at the extreme 

CCTs, we evaluated the color rendition performance of the QD-LED using 

CQS, and this also gave a similar result, CQS=70.3. The emission spectrum of 

the device and the chromaticity point of this spectrum can be found in Figure 6.3 

together with the photo of the light sources.  

 

Figure 6.3 The emission spectra of the QD-LED and corresponding chromaticity point on 

CIE 1931 chromaticity diagram along with the photo of the QD-LED [103]. 

 

In summary, in this work we demonstrated a white QD-LED having a S/P 

ratio larger than the most commonly used light sources together with a 

reasonable color rendition performance for the first time.      
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6.3 Spectral Recommendations for White Light 

Emitting Diodes with High Mesopic Luminance 
 

 

 

 

 

 

 

This section is based in part on the publication “Efficient street lighting with 

good color rendering using semiconductor quantum dot nanophosphors” T. 

Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, in submission. 

 

In this part of the thesis, we present a photometric study of color-conversion 

LEDs integrated with semiconductor nanophosphors of colloidal quantum dots 

(QDs) that enable higher luminance than those of conventional light sources in 

mesopic regimes given the road lighting standards in the US and the UK. 

Having worked with over 10 million designs, we have found that QD-LEDs can 

supply 15-20% better mesopic luminance than both cold white fluorescent lamp 

and high-pressure sodium lamps, while providing a color quality scale ≥80 at the 

same time. These QD-LEDs prove to be electrically more efficient than 

conventional sources provided that their power conversion efficiencies are ≥70-

75%, depending on the luminance level standards. As stated by Raynham [106], 

the quality of the road lighting is evaluated using average luminance, overall and 

longitudinal uniformity of luminance, threshold increment, and surround ratio. 

Among these parameters, in this work we focus on the average luminance, 

which strongly depends on the materials chosen and spectra designed, whereas 

other quality parameters vary mostly during the luminary design and their large 

scale use.  
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6.3.1 Computational Approach 
 

 

 

 

 

 

Designing light sources with high luminance and good color rendering requires 

careful spectral design. To this end, narrow light emitter combinations are 

desirable as they enable precise spectrum control. Because of their low energy 

consumption and narrow emission bandwidths, light emitting diodes (LEDs) are 

good candidates for this purpose. However, current commercial white LEDs use 

rare-earth ion based phosphors as their color conversion materials. Apart from 

raising concerns regarding their supply security [87], phosphors possess a very 

broad emission band; and more importantly, tuning their emission spectrum and 

achieving narrow bands is technically a very challenging task. On the other 

hand, using separate LED chips emitting different colors increases the cost of 

production tremendously although good spectral tuning can be realized. 

Furthermore, obtaining an efficient LED in green region is another important 

drawback of multi-chip systems [9]. Considering all of these limitations, 

colloidal semiconductor nanophosphors are the most appropriate material 

systems since their narrow emission bandwidths allow for good spectral tuning 

[90,93], and their quantum efficiency may exceed 90% in solution and 70% in 

film, which makes such QD integrated white LEDs (QD-WLEDs) promising 

candidates of next generation lighting systems [56], for both indoor and outdoor 

applications. The spectral requirements of QD-WLEDs for indoor applications 

have already been studied [90] and efficient devices have been demonstrated 

[93]. However, those for the outdoor lighting given varying levels of luminance 

(mesopic vision conditions) have not been studied to date. 

 

The performance criteria for road lighting are different than the indoor case. 

As mentioned above, good quality road lighting requires high luminance in 

mesopic light levels, good color rendering and low energy consumption. In this 

part, we investigate the performance of QD-WLEDs for road lighting and 

investigate spectral requirements such that higher luminance can be obtained per 
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supplied optical power together with high color rendering performance. In our 

study, we compared the mesopic luminance performance of the designed QD-

WLEDs with the conventional light sources including the standard daylight 

source D65, a cool white fluorescent lamp (CWFL), a blackbody radiator at 

3,000K, a metal-halide lamp (MH), a high pressure sodium lamp (HPS), and a 

mercury vapor lamp (MV). Furthermore, we evaluated the color rendition 

performance of QD-WLEDs using color quality scale (CQS), which provides 

healthier results than color rendering index (CRI) for narrow emitters [17]. In 

our calculations, we excluded all of the designs having a CQS less than 80 to 

satisfy the condition of good color rendering.  

6.3.1.1 Structure of spectral designs 
 

 

To examine the efficiency of light sources in the mesopic region, we selected 

four photopic luminance levels so that road lighting standards in the USA [22] 

and the UK [23,24] are satisfied. We chose 0.50 cd/m
2
 for freeway, collector 

and local road lighting according to the USA and link road standards for the UK. 

0.80 cd/m
2
 satisfies the US standards of express way and major road lighting, 

and the secondary distributor lighting standard of the UK. 1.25 cd/m
2
 is chosen 

to fulfill the UK requirements for strategic route, major distributor, secondary 

distributor, and finally 1.75 cd/m
2
 is selected for motorway lighting standards in 

the UK. We found out that CWFL is the most efficient commercial light source 

for the case of photopic luminances of 0.50 and 0.80 cd/m
2
, whereas HPS 

becomes the most efficient one when photopic luminances of 1.25 cd/m
2
 and 

1.75 cd/m
2
 are considered (Figure 6.4). At photopic luminances of 0.50 and 0.80 

cd/m
2
, CWFL achieves the highest ratio of mesopic luminance to optical 

radiance of 369.8 and 362.6 lmmes/ Wopt. HPS features ratios of 356.6 and 359.9 

lmmes/Wopt. Considering these values, we place a threshold to our investigated 

QD-WLED designs; only those having higher luminance than CWFL and HPS 

at the same radiance values are selected for all four photopic luminance ranges 

together with CQS ≥80. We designed these QD-WLED spectra similar to Ref. 
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90 using Gaussian-type spectrum for each color component of blue, green, 

yellow and red, where the blue is generated by the electroluminescence of an 

LED chip and other color components are generated by the photoluminescence 

of quantum dot nanophosphors. We varied the blue wavelength to 450, 470 and 

470 nm, the green to 510, 525 and 540 nm, the yellow to 555, 570 and 585 nm, 

and the red to 600, 620 and 640 nm. Totally, 81 wavelength combinations were 

tested. We also changed the full-width at half maximum (FWHM) of each of the 

Gaussian-type spectrum as 25, 35, 45, and 55 nm. FWHM combinations 

constituted 256 cases: Moreover, the amplitude of the color components were 

varied over 0, 1, 2 and 3 units and then normalized to 1000. As a result, 529 

amplitude combinations were obtained. In total, 10,969,344 QD-WLED designs 

were generated and the Lmes and CQS thresholds mentioned above were applied 

on them. The simulation results of these QD-LED design variations are 

summarized in Table 6.2-6.4, which will be discussed one by one below for 

different luminance level standards. 

 

Figure 6.4 Mesopic luminance (Lmes) vs. radiance (P) for several light sources: standard 

daylight source (D65), cool white fluorescent lamp (CWFL), blackbody radiator at 3000 K 

(BR@3000K), metal-halide lamp (MH), high pressure sodium lamp (HPS) and mercury 

vapor lamp (MV), and our WLED#1, WLED#2, WLED#3. 
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 Standard 1, WLED#1 Standard 2, WLED#2 Standard 3&4, WLED#3  

(nm) 450, 525, 570, 620 450, 525, 570, 620 450, 525, 570, 620 

(nm) 25, 45, 25, 25 25, 45, 45, 25 25, 25, 55, 25 

a (/1000) 200, 300, 200, 300 182, 273, 182, 364 167, 333, 167, 333 

Table 6.2 Spectral parameters of our WLED#1-3 resulting in the highest Lmes for all the 

four standards used. : peak emission wavelength, : FWHM, and a: amplitudes of color 

components of blue, green, yellow and red. 

   

 Standard 1 Standard 2 Standard 3 Standard 4 

Average stdev Average stdev Average stdev Average stdev 

Lmes 
(cdmes/m

2
) 

0.57 0.02 0.89 0.03 1.26 0.04 0.89 0.03 

CQS 87.7 2.12 87.6 2.04 1.26 2.00 87.6 2.04 

CCT (K) 5,151 1,642 4,854 1,342 4,679 1,223 4,854 1,342 

Table 6.3 Average and stdev of Lmes, CQS, CCT for QD-WLED designs 

 

 Standard 1 Standard 2 

Average stdev Average stdev 

(nm) 458, 524, 
569, 623 

9.7, 
10.4, 

12.2, 7.5 

458, 525, 
569, 622 

9.7, 
10.3, 

12.2, 6.7 

(nm) 41.8, 41.8, 
41.3, 41.2 

11.0, 
11.0, 

11.3, 10.7 

41.3, 41.8, 
41.4, 41.2 

11.1, 
11.0, 

11.3, 10.7 

a (/1000) 242, 263, 
188, 307 

73, 75, 
82, 83 

230, 264, 
190, 316 

70, 75, 
83, 83 

 Standard 3 Standard 4 

 Average stdev Average stdev 

(nm) 458, 525, 
569, 622 

9.7, 10.3, 
12.2, 6.4 

457, 525, 
569, 621 

9.6, 
10.1, 

12.2, 4.9 

(nm) 41.0, 41.7, 
41.5, 41.3 

11.1, 11.0, 
11.3, 10.6 

41.0, 41.7, 
41.5, 41.3 

11.2, 11.0, 
11.3, 10.6 

a (/1000) 222, 264, 
190, 323 

67, 75, 
84, 84 

206, 267, 
194, 334 

62, 75,   
83, 83 

Table 6.4 Average and stdev of spectral parameters for all four standards studied here. : 

peak emission wavelength, : FWHM and a: amplitudes of color components of blue, 

green, yellow and red.   
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6.3.2 Standard 1: Lp of CWFL = 0.50 cd/m
2
 

 

 

At a radiance level of ca. 1.47 mWm
-2

sr
-1

, CWFL provides a Lp of 0.50 cd/m
2
 

and a Lmes of 0.54 cdmes/m
2
. QD-WLED designs exhibiting the same radiance 

and having higher Lmes values and CQS ≥80 are selected. 61,736 LED spectra, 

corresponding to only 0.56% of the whole spectra tested, passed these 

thresholds. This finding shows that careful spectral design is required to 

generate an efficient light source, as in the case of indoor lighting [90]. Our 

results also indicate that QD-WLEDs can achieve a Lmes of 0.65 cdmes/m
2
 with a 

CQS of 85.7. This Lmes value is ca. 20% better than what CWFL provides. At 

this radiance, spectrum giving the highest Lmes (WLED#1) reaches a Lp of 0.57 

cd/m
2
, which still remains within the same standards as CWFL with Lp=0.50 

cd/m
2
 does. Furthermore, correlated color temperature (CCT) of this spectrum 

turns out to be 5,437 K. The spectral parameters of WLED#1 are given in Table 

6.2. By changing the spectral parameters, one can achieve CQS up to 96.5 and 

CCT can be set within a very broad range from 2,362 K -corresponding to a 

warm white- to 24,066 K, which is a bluish cold white. As given in Table 6.3, 

the average Lmes of the spectra passing the thresholds is 0.57 cdmes/m
2
, which is 

5% higher than Lmes of CWFL. Standard deviation (stdev) of Lmes turns out to be 

0.02 cdmes/m
2
; 65% and 96% of the spectra tested have Lmes values between the 

average Lmes ± 1 stdev and the average Lmes ± 2 stdev, respectively. This points 

out that an extraordinary enhancement of Lmes at such a level of 20% is really 

hard to achieve and requires good spectral tuning. Average of CQS (87.7) shows 

that good color rendering can be obtained using QD nanophosphors while still 

providing a better Lmes than CWFL. Very low stdev of CQS values of the spectra 

passing the thresholds, only 2.12, supports this observation. In addition, the 

average of CCT turns out to be 5,150 K, which is 20% higher than the CCT of 

CWFL.  

 

An important point that we need to understand is the set of spectral 

parameters, i.e., the peak emission wavelength ( i), FWHM ( i) and the 
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amplitudes of color components (ai) required to produce spectra with high 

performance for road lighting applications (where the subscript i is blue (b), 

green (g) or red (r)). The average and standard deviation (stdev) of these 

parameters are listed in Table 6.4. Blue color component has an average and 

stdev of b of 457.5 nm and 9.67 nm, respectively. The average values of g, y, 

and r are 524.2, 569.1 and 622.6 nm. Green and yellow components have stdev 

larger than 10 nm; however, interestingly red exhibits a very low stdev. This 

shows that the peak emission wavelength of the red component should definitely 

be in the close vicinity of 620 nm as in the case of efficient indoor lighting [90]. 

Furthermore, we find out from the stdev values given in Table 6.4 that FWHMs 

can vary significantly while still satisfying high Lmes and CQS as opposed to the 

case of indoor lighting. When it comes to the amplitudes of the color 

components, the red one is the most dominant one and the yellow is the weakest. 

However, their large stdev provides us enough room to play with these values 

while still satisfying high Lmes and CQS. We also investigate the performance of 

the spectrum defined by the average values (Table 6.4). We find that this 

spectrum provides a very good CQS of 94.5 together with a Lp of 0.49 cd/m
2
 

and Lmes of 0.57 cdmes/m
2
, which is much lower than the maximum attainable 

Lmes. 

 

6.3.3 Standard 2: Lp of CWFL = 0.80 cd/m
2
 

 

 

At a radiance level of 2.36 mWm
-2

sr
-1

, CWFL has a Lp of 0.80 cd/m
2
 and a Lmes 

of 0.85 cdmes/m
2
. The number of QD-WLED spectra having higher Lmes values 

than CWFL while featuring CQS larger than 80 at the same time decreases to 

only 0.46% of the designs tested at this radiance. As in the previous case, this 

finding shows how important the spectral design is in order to achieve high-

quality road lighting. By changing the spectral parameters of QD-WLEDs, we 

can achieve a Lmes of 1.01 cdmes/m
2
 with a CQS of 85.8 at the same radiance, 

which is 19% higher than CWFL. This spectrum (WLED#2) has a CCT of 4,563 
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K, only 6% higher than that of CWFL. Moreover, its Lp is 0.94 cd/m
2
, which 

still satisfies the requirements of the same standards as CWFL does at this 

radiance. The parameters of this spectrum are presented in Table 6.2. Playing 

with the parameters of QD-WLED, a CQS of 96.1 can be reached and CCTs 

between 2,347 and 15,267 K can be obtained while still providing good color 

rendering and a high Lmes.  The average Lmes of the QD-WLEDs passing the 

stated thresholds is 0.89 cdmes/m
2
, whereas the average CQS and CCT are 87.6 

and 4,854 K, respectively (Table 6.3).  The stdev of Lmes is only 0.03 cdmes/m
2
, 

and the ratio of the spectra having Lmes between the average Lmes ± 1 and 2 

stdev, which defines an interval far away from the maximum Lmes, to the number 

of spectra exceeding the thresholds are 65% and 96%, respectively. As a result, 

again we conclude that careful spectral tuning is the key to achieving high Lmes 

(as high as 1.01 cdmes/m
2
). Although obtaining a very high Lmes is challenging, a 

large CQS can be reached more easily as the high average and the low stdev of 

CQS indicate (Table 6.3). A further remark is that increasing radiance limitation 

allows spectra with warmer shade to pass the thresholds applied for this 

standard. Investigation of average and stdev of the spectral parameters (Table 

6.4) does not lead to any significant conclusion different than the previous case 

where Lp of CWFL is 0.50 cd/m
2
. However, one point worth mentioning is that 

the amplitude of the blue component decreases with increasing red component. 

In addition, we computed that this average spectrum provides a CQS of 93.8, a 

Lp of 0.81 cd/m
2
 and a Lmes of 0.90 cdmes/m

2
.  

 

 

6.3.4 Standard 3: Lp of HPS = 1.25 cd/m
2
 

 

Increasing the photopic luminance level to 1.25 cd/m
2
 changes the type of the 

light source that we compare. As mentioned before, HPS becomes the efficient 

source at this luminance with a radiance of 3.39 mWm
-2

sr
-1

. The mesopic 

luminance of HPS then becomes 1.21 cdmes/m
2
. The number of QD-WLED 

spectra, whose Lmes values pass this value and have CQS 80 at the same 
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radiance, is 45,043 corresponding to ca. 0.41% of the designs tested. This shows 

that our conclusions about the careful spectral designs are still valid at this 

radiance level. The highest Lmes achieved by a QD-WLED becomes 1.42 

cdmes/m
2
, 19% higher than what HPS provides. CQS and Lp of this design 

(WLED#3) are 85.2 and 1.36 cd/m
2
, which remains in the same road lighting 

standard as HPS. The spectral parameters of WLED#3 can be found in Table 

6.2. The CCT values of the tested spectra cover a range between 2,347 and 

12,926 K, which corresponds to white light spectra having reddish to bluish 

shades. Furthermore, a CQS of 95.4 can be achieved using quantum dot 

nanophosphors. Average Lmes of the designs are 1.26 cdmes/m
2
 with a stdev of 

0.04 cdmes/m
2
. This finding shows that obtaining enhanced Lmes requires careful 

spectral optimization, as we concluded for the previous two cases. The average 

of CQS and its stdev are almost the same as in the previous cases. When it 

comes to the average and stdev of spectral parameters, we again have almost the 

same findings as in the previous cases. One important point to mention is that 

increasing Lp level slightly decreases the amplitude of the blue component and 

slightly increases the amplitude of the red component. Photometric performance 

of this average spectrum is as follows: CQS=93.9, Lp=1.17 cd/m
2
, Lmes=1.26 

cdmes/m
2
.   

 

 

6.3.5 Standard 4: Lp of HPS = 1.75 cd/m
2
 

 

 

Finally, increasing the radiance level of HPS to 4.74 mWm
-2

sr
-1

 increases its Lp 

to 1.75 cd/m
2
 and its Lmes to 1.71 cdmes/m

2
. The number of QD-WLED designs 

having better Lmes at this radiance decreases down to 27,395 corresponding to 

only 0.25% of the spectra under test. Together with the previous findings, one 

can easily conclude that obtaining Lmes higher than these of the conventional 

sources is more challenging as the radiance and correspondingly photopic 

luminance levels increase. WLED#3 provides the highest Lmes at this radiance 
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level as well. This time it achieves a Lmes of 1.98 cdmes/m
2
, 16% higher than 

what HPS can supply at the same radiance. Photopic luminance of WLED#3 is 

1.91 cd/m
2
, which still falls within the desired range of Lp to satisfy the 

standards. Among the tested spectra, the warmest QD-WLED design provides 

2,347 K and the coldest one has a CCT of 9,422 K; furthermore, average CCT 

decreases to 4,445 K. The average and stdev values of Lmes of the designs 

passing the thresholds are 1.77 and 0.05 cdmes/m
2
, respectively. The number of 

spectra providing Lmes ± 2 stdev constitutes 95% of the spectral designs that 

passed the thresholds. Using this information, we can conclude that achieving a 

Lmes such as 1.91 cdmes/m
2
 is still tricky at this radiance level. As in the previous 

cases, however, obtaining high CQS is much easier as indicated by the high 

average (87.3) and low stdev (1.82). Investigation of spectral parameters does 

not reveal a significant change when compared to the previous cases (Table 6.4). 

Further points that require attention are the decreasing stdev of red peak 

emission wavelength, and increasing and decreasing amplitudes of red and blue 

components as the radiance level further increases, respectively. This average 

spectrum provides a CQS of 93.2, a Lp of 1.68 cd/m
2
 and a Lmes of 1.77 

cdmes/m
2
. 

 

 

 

6.3.6 Spectral recommendations and electrical efficiency 

conditions  
 

 

Considering all the results obtained above, we can state that QD-WLEDs can 

provide much better optical performance than conventional light sources. 

However, careful spectral optimization is required. For optimum spectra, we 

recommend using the highest Lmes spectra given in Table 6.2 and in Figure 6.5 

instead of using average parameters in Table 6.4. Using these spectra, one can 

generate 16-20% more optically efficient white light for road lighting 

applications with QD-WLEDs. On the other hand, high optical performance 
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does not guarantee low energy consumption. To realize electrically efficient 

devices, one also needs to overcome the electrical performance of the 

conventional sources. For example, HPS and CWFL have average power 

conversion efficiencies (PCEs) of 30% and 50%, respectively [109]. To resolve 

this issue, we calculated the radiances needed using CWFL and HPS to obtain 

the highest Lmes of QD-WLEDs. We found that CWFL requires 1.78 and 2.82 

mWm
-2

sr
-1

 for the first two cases, respectively; and HPS requires 4.00 and 5.47 

mWm
-2

sr
-1

 for the third and fourth cases, respectively. Radiances generated by 

QD-WLEDs are 83%, 84%, 85% and 87% of these conventional sources, 

respectively. By taking the PCEs of CWFL and HPS, we find that QD-WLEDs 

need to have PCEs of at least 29.1%, 29.4%, 42.5% and 43.5% for being more 

electrically efficient than these conventional sources, which prove to be feasible. 

 

Figure 6.5 QD-WLED spectra leading to the highest mesopic luminance (Lmes) for standard 

1 (WLED#1), standard 2 (WLED#2), and standards 3&4 (WLED#3). 

 

6.3.7 Conclusions  
 

In conclusion, we show that QD-WLEDs can provide up to 20% higher 

efficiency at the mesopic light levels than the conventional light sources used for 
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road lighting, thanks to the combination of their narrow emission bands that are 

strategically placed. Moreover, we find the necessary spectral parameters for 

achieving this high performance in four different luminance levels chosen in 

accordance with the road lighting standards of the USA and UK. Additionally, 

we predict that these QD-WLEDs are also electrically more efficient as long as 

their power conversion efficiencies are kept above 70%, 71%, 73% and 75%, 

depending on the corresponding standards chosen. All in all, these results 

indicate that quantum dot integrated white LEDs are strong candidates for 

replacing conventional light sources in the future. 
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Chapter 7 
 

 

Colorimetric and Photometric 

Investigation of Conjugated Polymer 

Nanoparticles 

 

 

This chapter is based in part on the publication “White-Emitting Conjugated 

Polymer Nanoparticles with Cross-Linked Shell for Mechanical Stability and 

Controllable Photometric Properties in Color-Conversion LED Applications” 

E.-J. Park, T. Erdem, V. Ibrahimova, S. Nizamoglu, H. V. Demir, and D. Tuncel 

ACS Nano 5, 2483 – 2492 (2011).  

 

 

In this chapter, we review our efforts on the generation of white light emission 

using conjugated polymer nanoparticles whose emission spectra are tunable via 

the crosslinking mechanism under UV–illumination at 254 nm. Poly[(9,9-

dihexylfluorene)-co-alt-(9,9-bis-(3-azidopropyl)fluorene)] (PF3A) polymers are 

synthesized and converted into a nanoparticle structure by using the 

reprecipitation method, as described in Chapter 3. The chemical structure of the 

polymer is given in Figure 7.1 [63]. The nanoparticles are prepared in two 

different sizes by controlling the concentration of the polymer. The larger 

particles (PF3A-L) have an average diameter of 166 nm whereas the size of the 

smaller ones (PF3A-S) is 42 nm. These nanoparticle dispersions are then 

illuminated under UV-light at a wavelength of 254 nm for durations changing 

from 1 to 6 hours in air and under nitrogen atmosphere. As a result, azide groups 

are decomposed into very reactive nitrene species so that crosslinking between 



 112 

polymer chains is realized. Corresponding photoluminescence graphs of PF3A-

L and PF3A-S nanoparticles can be found in Figure 7.2 and 7.3 [63].    

 

Figure 7.1 Molecular structure of poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(3-

azidopropyl)fluorene)] (PF3A)  [63]. 

 

First, photometric investigations are carried out for the nanoparticle 

dispersions to evaluate their performance. The results of the calculations for 

PF3A-L conjugated polymer nanoparticles (CNPs) are given in Table 7.1 [63]. 

We found out that the CCTs of the dispersions cannot be calculated except the 

case of crosslinking for 6 h. The reason for this is the very dominant blue 

emission of the nanoparticles. As the crosslinking duration increases, the green-

yellow content gets stronger compared to blue, as a result the emitted color 

changes from blue to yellowish white. These changes can easily be followed 

from Figure 7.2. Since the green-yellow content of the spectrum increases as the 

crosslinking time is increased, LER levels increase whereas S/P becomes even 

lower because the emission spectra starts having a better match to photopic eye 

sensitivity function compared to the scotopic eye sensitivity function. Another 

point that deserves attention is the stronger increase of green-yellow content of 

the spectrum upon crosslinking in an oxygen-free atmosphere. This results in 

higher LERs and lower S/P values.  
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Figure 7.2 Photoluminescence graphs of PF3A-L nanoparticles crosslinked (a) in air and 

(b) under nitrogen atmosphere for varying durations between 1 and 6 hours [63].  

  

 

Figure 7.3 Photoluminescence graphs of PF3A-S nanoparticles crosslinked (a) in air and 

(b) under nitrogen atmosphere for varying durations between 1 and 6 hours [63]. 

 

Crosslinking has similar consequences on the small nanoparticles (PF3A-S) 

as it can be seen in Figure 7.3. Increased crosslinking duration strengthens the 

relative content of green-yellow part. Consequently, LER increases and S/P 

decreases as the nanoparticles are hold under UV illumination. More 

importantly, crosslinking has a more significant effect on the emission spectrum 

of the particles. Compared to larger particles, PF3A-S nanoparticles exhibit 

lower CCTs and S/Ps and higher LERs as a natural consequence of stronger 

rising of green-yellow content of the emission spectrum (Figure 7.2). The LER 

values came out to be as high as 350 lm/Wopt, which is really a high level for a 

broad band emitter while still preserving S/Ps over 2.00.   
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Nanoparticle 
CCT  
(K) 

LER  
(lm/Wopt) 

S/P x y 

PF3A-L NP N/A 188 4.56 0.1928 0.1838 

PF3A-L NP (1H, in air) N/A 203 4.51 0.1879 0.2065 

PF3A-L NP (2H, in air) N/A 199 4.27 0.1985 0.1960 

PF3A-L NP (3H, in air) N/A  207 4.08 0.2029 0.2057 

PF3A-L NP (4H, in air) N/A 224 3.72 0.2127 0.2243 

PF3A-L NP (5H, in air) N/A 235 3.55 0.2187 0.2380 

PF3A-L NP (6H, in air) 52117 247 3.38 0.2249 0.2523 

PF3A-L NP (1H, under N2) N/A 192 4.42 0.1955 0.1879 

PF3A-L NP (2H, under N2) N/A 203 4.48 0.1887 0.2064 

PF3A-L NP (3H, under N2) N/A  203 4.18 0.2006 0.2013 

PF3A-L NP (4H, under N2) N/A 201 4.16 0.2007 0.1982 

PF3A-L NP (5H, under N2) N/A   228 3.68 0.2134 0.2311 

PF3A-L NP (6H, under N2) 24231 260 3.22 0.2314 0.2687 

Table 7.1 Photometric computation results of PF3A-L dispersions for different cross-

linking durations [63]. 

Nanoparticle CCT  
(K) 

LER  
(lm/Wopt) 

S/P x y 

PF3A-S NP N/A 165 4.45 0.1950 0.1720 

PF3A-S NP (1H, in air) N/A 220 3.42 0.2216 0.2364 

PF3A-S NP (2H, in air) 8462 299 2.59 0.2662 0.3347 

PF3A-S NP (3H, in air) 7733      311 2.45 0.2750 0.3489 

PF3A-S NP (4H, in air) 7293 320 2.37 0.2813 0.3602 

PF3A-S NP (5H, in air) 6090 349 2.11 0.3075 0.3987 

PF3A-S NP (6H, in air) 5835 355 2.04 0.3155 0.4071 

PF3A-S NP (1H, under N2) 15286 263 2.95 0.2428 0.2893 

PF3A-S NP (2H, under N2) 13261 272 2.91 0.2463 0.3019 

PF3A-S NP (3H, under N2) 7865 310 2.49 0.2727 0.3476 

PF3A-S NP (4H, under N2) 7109 324 2.35 0.2842 0.3660 

PF3A-S NP (5H, under N2) 6490 342 2.22 0.2964 0.3881 

PF3A-S NP (6H, under N2) 6257 353 2.19 0.3013 0.4033 

Table 7.2 Photometric calculation results of PF3A-S dispersions at different crosslink 

durations [63]. 

After investigating these photometric properties of the dispersions, we move 

to the optical properties of the films prepared by drop-casting on a quartz 

substrate. The resulting films showed significant differences from the 

dispersions. For both of the nanoparticles, i.e., PF3A-L and PF3A-S sharp peaks 

emerged in the green-yellow region of the photoluminescence curve (Figures 

7.4) [63]. The intrinsic properties of the material is not expected to yield such a 

difference in the emission spectrum; therefore, we believe that the spectral 
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sharpening might be due to the optical effects caused by the environmental and 

morphological changes though we still do not have a conclusive remark.  

   

Figure 7.4 Photoluminescence spectra of the films prepared using (a) PF3A-L NP and (b) 

PF3A-S NP dispersions that are not crosslinked at all and crosslinked for 3 hours in air 

and under nitrogen [63]. 

Because the green-yellow content of the films of PF3A-L nanoparticles is 

weak, their photometric properties are clearly very bad, even not worth 

calculating. Therefore, we only calculated the photometric performance of the 

films of PF3A-S nanoparticles. Their photometric performance remained lower 

compared to the dispersion case. For example, blue content in their spectrum is 

so dominant that CCT of none of the films could be calculated. The LER of the 

not-crosslinked particles is 137 lm/Wopt, whereas crosslinking increases the LER 

levels to 195 lm/Wopt and 209 lm/Wopt depending on the environment, i.e., air or 

nitrogen atmosphere, respectively. As a consequence of the strengthening of 

green-yellow content, S/P values decrease from 5.32 of not-crosslinked 

nanoparticles to 3.64 and 3.47 of the films made of nanoparticles crosslinked for 

3 hours in air and under nitrogen, respectively. These results and CIE 1931 

chromaticity coordinates of the photoluminescence spectra of these films are 

given in Table 7.3 [63]. 

 

By considering these results, we integrated only PF3A-S nanoparticles 

crosslinked for 3 hours on a near-UV LED made of InGaN/GaN emitting at 380 

nm. The final spectra followed the photoluminescence curves of the films as 

expected. The corresponding electroluminescence graph is given in Figure 7.5 

[63].   
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Table 7.3 Results of the photometric calculations carried out on the photoluminescence of 

the films made of PF3A-S nanoparticles [63]. 

 

Figure 7.5 Electroluminescence spectrum of the final device where PF3A-S nanoparticles 

are integrated on a near-UV LED [63]. 

 

In conclusion, in this work we investigated the properties of polymer 

nanoparticles from a colorimetric and photometric point of view. We found out 

that the optical properties of the nanoparticles can be tuned within a wide range 

via crosslinking. However, the performance turned out to be inappropriate for 

indoor lighting applications but more suitable for outdoor applications as it can 

possess very high S/P values.    

Nanoparticle 
CCT  
(K) 

LER 
(lm/Wopt) 

S/P x y 

PF3A-S NP-film N/A 137 5.32 0.1820 0.1363 

PF3A-S NP-film  
(3H,in air) 

N/A 195 3.64 0.2144 0.2152 

PF3A-S NP-film  
(3H,in N2)  

N/A 209 3.47 0.2209 0.2299 
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Chapter 8 
 

 

Conclusion 

 

 

In this thesis, we reviewed our efforts on high-quality and highly efficient white 

light generation at different light levels appropriate for indoor and outdoor 

lighting. To achieve the required performance levels, we made use of novel 

materials such as colloidal semiconductor quantum dots and conjugated polymer 

nanoparticles, both of which enable good spectral tuning.  

 

First, we reviewed the basics of color science and photometry, which we use 

for evaluating the quality of the emitted light and for defining the generated 

color. Within the frame work of color science, we presented the color matching 

functions and color spaces together with the correlated color temperature that 

are used to define the colors of the objects and emitted light. Furthermore, two 

important metrics, color rendering index and color quality scale, are discussed, 

which are used to evaluate the capability of the light sources in rendering the 

real colors of the objects. In addition, we explained some important radiometric 

and photometric criteria such as luminous efficacy of optical radiation, 

efficiency ratios of scotopic to photopic visions (S/P), photopic and mesopic 

luminances after defining the eye sensitivity functions corresponding to the 

ambient light level.      

 

Next we moved to the description of materials that have been in the focus of 

this thesis: quantum dots and conjugated polymer nanoparticles. We discussed 

their optical properties followed by their potentials for white light applications 

having high-efficiency and high-quality. As the quantum dots have very narrow 

emission bands, they allow for good spectral tuning so that the properties of the 
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generated white light can be easily controlled. On the other hand, crosslinking of 

the polymer nanoparticles provides another pathway for tunable light generation.  

 

 After describing the most widely preferred method for white light emitting 

diode designs, we presented trade-offs of the photometric performance criteria 

and provided spectral recommendations for high-quality white light generation 

for indoor lighting using quantum dot nanoluminophors. Then we continued 

with our experimental work on the state-of-the art white LED in terms of 

photometric performance for indoor applications. In the following section we 

explained our theoretical photon conversion model, which we developed for 

predicting the electrical performance of the quantum dot integrated white light 

emitting diodes, and showed that these devices can reach significant levels of 

efficiency and has a great potential to surpass the traditional light sources and 

existing LED technologies both photometrically and electrically.  

 

Subsequently, we focused on the outdoor lighting instead of indoor lighting. 

Since the corresponding luminance levels are very different than indoor 

applications, the spectral requirements of the efficient light sources change 

significantly. Considering these changes, we presented spectral 

recommendations for efficient white light generation, which can enhance the 

vision in scotopic and mesopic vision regimes; using quantum dot integrated 

white LEDs.   

 

Finally, we evaluated colorimetric and photometric performance of 

conjugated polymer nanoparticles. Especially, observing and quantifying the 

evaluations in their photometric performances showed that crosslinkable 

polymer nanoparticles can be a novel class of materials, which allow for color 

tuning and, as a result, become a good alternative material for white light 

generation in outdoor applications. 
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In conclusion, we presented our research work in high-quality high-efficiency 

light generation for indoor and outdoor lighting applications. Considering the 

deep-red emission tail issue of phosphors, and the cost and green gap problem of 

multichip LED approaches, we can easily claim that quantum dots can open up a 

new path for achieving the targeted efficiency levels of 200 lm/Welect [75] so that 

the energy consumption for lighting decreases significantly.  As crosslinkable 

conjugated polymer nanoparticles are totally novel materials, they can also be 

integrated in white light emitting diodes after spectral optimization.   

 

The results of this thesis work led to 5 science citation index (SCI) papers 

and 3 peer-reviewed international conference papers along with 5 SCI papers in 

submission and one conference paper in submission, which are listed below: 

SCI papers: 

1. T. Erdem, S. Nizamoglu, X.W. Sun and H. V. Demir, Optics Express, 

18, 340-347 (2010). 

2. S. Nizamoglu, T. Erdem, X. W. Sun and H. V. Demir,  Optics Letters, 

35, 20, 3372-3374 (2010). 

3. S. Nizamoglu, T. Erdem and H. V. Demir, Optics Letters, 36, 1893 

(2011). 

4. T. Erdem and H. V. Demir, Nature Photonics, 5, 126 (2011). 

Correspondence letter. 

5. E.-J. Park, T. Erdem, V. Ibrahimova, S. Nizamoglu, H. V. Demir and D. 

Tuncel, ACS Nano, 5, 2483 (2011). 

SCI papers in submission: 

6. T. Erdem, S. Nizamoglu, H. V. Demir, “Power conversion and luminous 

efficiency performance of semiconductor quantum dot nanophosphors on 

light-emitting diodes,” in submission. 

7. T. Erdem, S. Nizamoglu, X. W. Sun, H. V. Demir,“Efficient street 

lighting with good color rendering using semiconductor quantum dot 

nanophosphors,” in submission. 
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8. T. Erdem, S. Nizamoglu, X. W. Sun, H. V. Demir, “Computational 

analyses of white LEDs exhibiting high color rendition and high 

scotopic/photopic efficacy ratio for outdoor lighting applications,”  in 

submission.  

9. S. Nizamoglu, T. Erdem, H. V. Demir, N. Gaponik, A. Eychmüller, 

“Quantum dot integrated LEDs based on photonic and excitonic color 

conversion” in submission.  

10. T. Erdem, V. Ibrahimova, D. Tuncel, H. V. Demir, “Hybrid structures of 

polyflourene nanoparticles and InGaN/GaN quantum well nanopillars,” 

in submission.  

Peer-reviewed international conference publications: 

11. S. Nizamoglu, T. Erdem, X. W. Sun and H. V. Demir, CLEO/IQEC 

Baltimore, Maryland, USA, May 1-6, 2011. Paper Efficient Lighting 

AWA2. 

12. T. Erdem, S. Nizamoglu and H. V. Demir, Proceedings of 23rd IEEE 

Annual Photonics Society Meeting, Denver, CO, USA (7 – 11 November 

2010). Session: ThL: LED Technologies. Paper: ThL 5. 

13. B. Guzelturk, T. Erdem, E. Unal, S. Nizamoglu, D. Tuncel and H. V. 

Demir, Proceedings of 23rd IEEE Annual Photonics Society Meeting, 

Denver, CO, USA (7 – 11 November 2010). Session: TuE: Engineered 

Quantum Dot Devices and Materials. Paper: TuE 3. 

International conference publications in submission: 

14. T. Erdem, S. Nizamoglu, H. V. Demir, “Power conversion and luminous 

efficiency performance of nanophosphor quantum dots on color-

conversion LEDs for high-quality general lighting,” submitted for SPIE 

Photonics West 2011.  
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