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In this paper, a new type of circular photonic crystal (CPC) with a geometrical distribution of concentric layers
is presented. A broad and isotropic photonic band gap is achieved using this geometrically distributed CPC
(GCPC). Also, the influence of the number of concentric layers to the overall band gap of GCPC is studied. It is
demonstrated that the band gap broadens with a red shift when the number of concentric layers is increased.
The reason for the red shift of the band gap is further investigated.
appan), echkam@ntu.edu.sg

l rights reserved.
© 2011 Elsevier B.V. All rights reserved.
Photonic crystals (PCs) [1,2], which are also known as photonic
band gap materials, have attracted significant attention of scientists
for their applications including optical integrated circuits [3], lasers
[4], high-Q cavities [5], and nonlinear optics [6]. PCs are artificial
structures with alternating arrangement of various materials and
form a band gap in which the propagation of electromagnetic wave
is prohibited in certain range of frequencies and directions. Two
dimensional PCs have been commonly periodically arranged in
triangular or square lattices and the resulting band gap size
obtained by these PCs has been relatively narrow and has strongly
depended on the direction of the light propagation. However, some
of the applications require the band gap to be broad and isotropic,
which means that the band gap size needs to be invariant to
changing the angle of the incident light. To date, significant
research efforts have been made to broaden the bad gap. Recently
a new way to construct one dimensional broad band gap PCs (called
geometrically distributed one dimensional PCs) for all angles and
all polarizations has been developed [7]. The whole structure
contains PCs of different periods that are distributed in geometrical
series with a carefully designed geometrical ratio. With a proper
designation, this one dimensional geometrically distributed PC can
be used to block any range of light that the designer desires to. This
method can also be used to construct two dimensional, all angle
broad band gap PCs.
Circular photonic crystals (CPCs) recently proposed by several
groups [8,9] can be used to obtain an isotropic band gap (i.e., all
directions have same band gap). The lattice of CPCs is arranged in
concentric layers. The isotropic photonic band gap is originated from
its high symmetry in the wave vector (k) space and has been verified
by experiment [8]. After the CPC structure was proposed, many
applications based on the structure have been rapidly developed. CPC
high-Q microcavities [10], CPC resonators [11] and CPC microcavity
lasers [12] have been reported recently. Other types of CPC cavities
and resonators [13–16] also have been intensively studied and
designed to achieve high Q factor. However, broadening of the band
gap has never been discussed.

In this paper, different from the previously reported works, we
present a new type of CPC structure to realize a broad and isotropic
band gap. We used the idea of geometrical distribution of periods,
which warrants substantial enlargement of omni-directional band
gaps in 1D PC structure [7], to design CPC. The CPC is designed such
that the distance between each concentric layer is geometrically
distributed. We found that such a geometrically distributed CPC
possess a very broad and isotropic band gap compared to an ordinary
CPC.

The origination of the isotropic of band gap of GCPC is owing to the
arbitrary rotational symmetry of the structure the same as the CPC
structure which has been verified by changing the incident angle of a
millimeter wave [8]. Because of this, we do not show detailed analysis
on the relationship between band gap size and different incident
angles.

The arrangement of the GCPC structure is shown in Fig. 1. On the
same concentric layer, the distance between any two rods is a
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Fig. 1. The structure of GCPC. The black dot is the point detector used to collect
information for DFT. The ellipse in the left side of the structure is the launched Gaussian
wave. Fig. 2. The spectra of different CPC designs. The green solid line represents the spectrum

of uniform CPC with di=d0 and ri= r0 for the whole structure. The blue solid line
represents the spectrum of the GCPC constructed with the rule of di=d0R

(i−1). Here
d0=0.4096 μm, r0/d0=0.2, N=10, R=1.1, ri/di=0.2 for both uniform CPC and GCPC.
The refractive index of the rods is 3.6.
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constant and all rods are the same in size. The positions of the rods in
the x–y plane (Fig. 1) are given by: [8]
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In Eq. (1), di (i=1, 2, …, N ) is the distance between the (i−1)th
and i-th concentric layer (i.e., a circular layer indicated as dark dashed
circle in Fig. 1), m is an integer ranging from 1 to 6i, N is the total
number of concentric layers. The radius of the rods, ri, and the distance
between each concentric layer, di, are geometrically distributed with
the ratio, ri/di, as a constant. The expression for di is di=d0R

(i−1),
(i=1, …, N), where R and d0 represent the common ratio of the
geometrical progression and the smallest distance between the
concentric layers, respectively. The radius of the central rod, r0, is
equal to r1.

The modeling approach used in this paper is based on the finite
difference time domain (FDTD) method, which is commonly applied
in PC simulations [17,18]. For our FDTD computation, the input source
is a pulsed Gaussian wave given by [17],
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where A, x0,T, toff, t0 represent field amplitude, center position, half
width, time offset and pulse width, respectively. A desired range of
frequency (or wavelength) can be obtained by appropriately control-
ling the time pulse. The frequency spectrum is obtained by using a
discrete Fourier Transform (DFT) method [19]. All these parameters
(A, x0,T, toff, t0) must be carefully optimized to make sure that the DFT
of the time pulse is large enough to cover the desired band edges. The
Gaussian beam is launched along the x-direction from the left side at
the middle of vertical direction of the structure (see Fig. 1). A point
detector, which is placed in the other side of the structure opposite to
the Gaussian beam, is used to collect information needed for the DFT.
The point detector is indicated as a black dot in Fig. 1.

In Fig. 2, we present spectra for two different CPC designs. In this
figure, the horizontal axis is the wavelength and the vertical axis is the
transmittance at the detector. The two structures are constructed as
follows:TheuniformCPCstructure is constructedwithdi=d0 and ri=r0
for the whole structure, ri/di=r0/d0=0.2, (i=1, 2, …, N ). The GCPC
structure is constructed with the rules of di=d0R

(i−1) (i=1, 2, …, N )
and ri/di=0.2.All theparameters are chosen as follows:d0=0.4096 μm,
r0/d0=0.2, R=1.1, N=10, r0=r1, for both uniform CPC and GCPC. The
refractive index of the rod is 3.6, which is the same as silicon and the
ambient medium is taken as air. The common ratio, R, has the same
meaning as in the 1D case [7], but the value of Rhere is smaller than that
in 1D case. In 1D case, each component of the whole geometrically
distributed structure is a 1D PC, which means each component has its
own band gap, so R can be set larger [7]. For the 2D case, the GCPC is
constructedbyusingof concentric layers of rodswhichdonot have their
own band gap. In this case, common ratio, R, should be chosen to be a
relatively small value tomake sure that thewholeGCPC can forma band
gap.

The green solid line in Fig. 2 represents the transmission spectrum
of the uniform CPC. On the other hand, the blue solid line indicates the
transmission spectrum of the GCPC. The upper and lower band edges
are defined as the end points of the wavelength range where the
transmittance is below 0.01. The band gaps of CPC and GCPC are
identified with red arrows in Fig. 2. From the figure, it is clear that the
GCPC has a broader band gap than the uniform CPC. The band gap
sizes of the uniform CPC and the GCPC are 0.619 μm and 1.42 μm,
respectively. The band gap of the GCPC has been enlarged about 130%
compared to the uniform CPC. The lower band edge of the GCPC in
Fig. 2 seems to be red-shifted in comparison to the uniform CPC.
Detailed discussion of the red-shift of the band gapwill be given in the
following paragraphs. Here it is worth pointing out that there are also
some small peaks in the band gap of the GCPC. These small peaks can
be suppressed by increasing the refractive index of the rods. This can
be easily understood from the properties of photonic crystals. The
larger the contrast of the refractive index of two different materials is,
the flatter the band gap of the photonic crystals is.

To investigate the origin of the red shift in the transmission
spectrum of the GCPC, the relationship of band gap width and the
number of the concentric layers of GCPC is studied. Fig. 3 shows the
band edges of the GCPC as a function of the number of concentric
layers (N). The upper and lower band edges are defined using the
same criterion used to define the band edges in Fig. 2. The red dashed
line indicates the upper band edge of the band gap of the GCPC for
different number of concentric layers. On the other hand, the black
solid line indicates the lower band edge of the band gap of the GCPC.
All of the design parameters used for Fig. 3 are the same as those in
Fig. 2 except for N. From Fig. 3, we can clearly see the broadening and
red-shifting of the band gap with the increasing number of the
concentric layers. For GCPC, both of the band edges almost linearly
increase with the upper band edge increasing faster than the lower
band edge. There could be several reasons for the red shift of the band
gap. Firstly, the effective refractive index of the GCPC increases with
the increasing number of the concentric layers. The rods become
larger and occupymore spaces in the structure, which then causes the



Fig. 3. The band gap width versus the number of concentric layers of GCPC and uniform
CPC respectively.
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effective refractive index of the GCPC to be larger. This increase in the
effective refractive index causes the red shifts of the band edges in the
GCPC. Secondly, the red shift of band gapmay come from the blocking
of the inner concentric layers. When the electromagnetic wave is
blocked by the inner concentric layers, the electromagnetic wave may
not be totally reflected back but propagates to the rear of the GCPC in
the outer concentric layers and is collected by the point detector that
is placed in the right side of the structure. In Fig. 3, we also plot the
band gap width of uniform CPC with di=0.4096 μm, as a function of
the number of concentric layers. The uniform CPC used here is the
same as the uniform CPC used in Fig. 2. The blue (dash-dotted) line
indicates the upper band edge of the band gap of the uniform CPC for
various N, and the green (dash-dot-dot) line indicates the lower band
edge of the band gap of the uniform CPC. It is clear that the width of
the band gap is almost the same despite the increasing number of
concentric layers. From the above study, we can conclude that the
broadening of isotropic band gap can be obtained using GCPC simply
by increasing the numbers of the concentric layers.

In summary, the optical properties of a new type, aperiodic, two-
dimensional GCPC have been studied. Broad and isotropic band gap
has been achieved by increasing the number of concentric layers. The
red shift of the band gap is attributed to two reasons: (1) the increase
of the effective refractive index, and (2) the light blockage by the
inner part and propagation by the outer part of the GCPC. The GCPC
can be used to achieve broad and isotropic band gap by only
increasing the number of concentric layers in a common ratio (R),
which is an easy way to design a broad band gap optical device.
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