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ABSTRACT

METASURFACE MICROLENS FOCAL PLANE
ARRAYS AND MIRRORS

Onur Akın

Ph.D. in Electrical and Electronics Engineering

Advisor: Hilmi Volkan Demir

January 2017

Lenses, mirrors and focal plane arrays (FPAs) are among the key components

affecting the functionality, performance and cost of electro-optical (EO) systems.

Conventional lenses rely on phase accumulation mechanism for bending wavefront

of light. This mechanism and the scarcity of transparent materials result in high-

complexity, high-cost and bulky EO systems. Conventional mirrors, on the other

hand, are limited by the electromagnetic properties of metals and cannot be used

in certain EO systems. Also, conventional FPAs suffer the fundamental tradeoff

between the optical resolution and optical crosstalk. Metasurfaces, relying on the

concept of abrupt phase shifts, can be used to built a new class of optical compo-

nents. However, for realizing metasurfaces, optical resonators should cover a full

0-to-2π phase shift response with close to uniform amplitude response. In this

thesis, to develop these metasurface optical components, nanoantennas that act

as unit cell optical resonators were designed and modeled. A design methodology

for building and optimizing these metasurfaces using the designed nanoanten-

nas was developed. After obtaining the metasurfaces, we successfully addressed

the problems of optical crosstalk in mid-wavelength infrared (MWIR) FPAs and

weak field localization in mirror contacts. Full-wave simulations confirmed major

crosstalk suppression of the microlens arrays to achieve ≤ 1% optical crosstalk

in the proposed metasurface FPAs, which outperforms all other types of MWIR

FPAs reported to date. However, due to intrinsic absorption losses in metals,

the resulting device efficiency was low (≤ 10%). To solve this problem, metallic

nanoantennas were replaced by dielectric nanodisks and the focusing efficiency

was dramatically increased to 80%. This is the first account of high-efficiency

low-crosstalk MWIR FPAs. Full-wave simulations also confirmed the strong field

localization of metasurface mirrors that can impose a phase shift response close

to 0◦. The findings of this thesis indicate that metasurface FPAs and mirrors are

highly promising for future EO systems.

Keywords: Metasurfaces, Microlenses, Magnetic mirrors.
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ÖZET

METAYÜZEY MİKROLENS ODAK DÜZLEM
MATRİSLERİ VE AYNALARI

Onur Akın

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Hilmi Volkan Demir

Ocak 2017

Mercek, ayna ve odak düzlem matrisleri (ODM) elektro-optik (EO) sis-

temlerin işlevselliğini, performansını ve maliyetini doğrudan etkileyen önemli

bileşenlerdendir. Konvansiyonel mercekler ışığın dalgaboyunu faz biriktirme

mekanizmasıyla bükerler. Bu mekanizma ve saydam malzemelerin yetersizliği,

EO sistemlerin karmaşıklığının, maliyetinin ve ağırlığının artmasına neden ol-

maktadır. Diğer yandan, konvasiyonel aynalar metallerin temel elektromanyetik

özellikleri ile limitlenmişlerdir ve belirli EO sistemlerde kullanılamazlar. Ayrıca,

ODM’ler optik çözünürlük ve optik bağlaşımın arasındaki temel ödünleşim ne-

deniyle performans kaybına uğramaktadır. Metayüzeyler ani faz kaymaları pren-

sibine dayanmaları sayesinde yeni bir optik bileşen çeşidinin geliştirilmesine

olanak tanımaktadır. Ancak, metayüzeylerin gerçeklenebilmesi için, 0-to-2π

arasındaki faz değişimini neredeyse tektip genlik değişimi ile sağlayabilen optik

rezonatörlere ihtiyaç duyulmaktadır. Bu tezde, metayüzey optik bileşenleri tasar-

lamak için, birim hücre optik rezonatör gibi davranan nanoantenler tasarlanmış

ve modellenmiştir. Bu metayüzeylerin gerçeklenebilmesi ve optimizasyonu için

bir tasarım yöntemi geliştirilmiştir. Daha sonra bu metayüzeyler kullanılarak,

orta kızılötesi bant (OKB) ODM’lerdeki optik bağlaşım ve kontakt aynalardaki

zayıf alan lokalizasyonu problemlerine çözüm üretilmiştir. Tam-dalga benze-

timleri bağlaşımın büyük ölçüde baskılandığını doğrularken, önerilen metayüzey

ODM’lerin ≤ %1 optik bağlaşımının diğer OKB ODM’lerden daha düşük

olduğunu göstermiştir. Fakat, metallerin özsel kayıpları yüzünden oldukça düşük

verimlilik elde edilebilmiştir (≤ %10). Bu sorunu çözmek için metal nanoan-

tenler dielektrik nanoantenler ile değistirilmiş ve verimlilik %80’e çıkarılmıştır.

Tam-dalga benzetimleri, metayüzey aynaların kuvvetli alan lokalizasyonunu da

doğrulamıştır. Bu tezdeki bulgular, metayüzey ODM ve aynaların gelecek nesil

EO sistemlerinin önemli bileşenlerinden olabileceğini göstermektedir.

Anahtar sözcükler : Metayüzeyler, Mikrolensler, Manyetik aynalar.
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Chapter 1

Introduction

Motivation of seeing one’s own image led to the invention of the mirror which can

be labeled as the first optical component. This invention marked the beginning

of the field of optics around 2000 BC [3]. Different kinds of optical compo-

nents, including various types of lenses and prisms, were designed, developed and

used through the periods of classical Greece, the Roman Empire and the Islamic

Golden age. Between the seventeenth and the nineteenth centuries, a completely

new kind of optical components and systems emerged through studies of science

pioneers such as Galileo, Newton, Huygens and Fresnel. These inventions led

to the major improvements of their age besides the realm of optics and revolu-

tionized our understanding of the universe. Finally, following the breakthrough

discovery of electricity, the integration of the field of optics and electronics paved

the way for development of complex electro-optical components and systems such

as electro-optical (EO) imaging systems.

EO imaging systems typically operate in the visible and near-infrared bands

of the electromagnetic spectrum while the operation of the infrared (IR) imaging

systems is commonly the far-infrared region. The optical transmission properties

of the atmosphere, however, divide the operation bandwidth of the IR imagining

systems into two sub-regions: the mid-wave infrared, which is roughly from 3 μm

to 5 μm, and the long wave infrared (LWIR), which is from roughly 8 μm to 14

μm [4]. EO and IR imaging systems are composed mainly of optical components,

detectors and electronics such as pre-amplifiers and analog-to-digital converters.
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Despite its long history of progressive development, optical components still make

the major contribution to the phenomena that either limit the functionality or

increase the complexity and/or cost of EO and IR imagining systems. For exam-

ple, the lack of variation in materials used in manufacturing optical components

results in limited functionality and the scarcity of such materials increases the

cost of these components. Especially, the choice of naturally transparent ma-

terial is particularly limited in both the near-infrared and MWIR region of the

electromagnetic spectrum and this situation dictates usage of special geometries

in design and thereby causing difficulties in fabrication processes of the relevant

optical components [5]. Another difficulty arises when the optics designer is con-

fronted with the generally conflicting requirements of size and performance of

an EO or IR imaging system since an optical component needs to be thick or

even bulky for achieving certain functionality using conventional optics. Also, in

order to achieve certain functionalities such as achromatic focusing, the number

of optical components being used must increase and this situation causes inte-

gration difficulties such as proper alignment of the components. Furthermore,

additional undesired effects that can cause performance degradation may occur

due to functioning mechanisms of conventional optical components. For example,

the emergence of diffraction spots at approximately the centers of nearby pixels

increased spatial cross-talk in the case of refractive microlens arrays that were

purposefully designed to decrease spatial cross-talk [2]. Finally, some applica-

tions may require additional functionalities that may not be achievable using the

familiar geometries of conventional optical components as in the case of magnetic

mirrors [6].

Conventional optical components mainly re-shape the wavefront and/or change

the polarization state of light for achieving the required functionalities. For doing

so, well-defined gradual phase is accumulated along the path of light through

these devices. Generalizing this approach as transformation optics, metamaterials

have been designed and developed for functioning as optical components that

can achieve novel phenomena such as abnormal light bending, sub-wavelength

focusing and cloaking [7, 8]. Despite these promising functionalities, material

characteristics still impose rigid restrictions of usual Snell’s law on capabilities

of optical components based on metamaterials [9]. Moreover, the difficulties in

fabricating relatively thick metamaterials cause degradations in relevant optical

components performance such as the quite small suppression ratio of thick chiral

metamaterials [10].
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Recently, metasurfaces that can be defined as the two-dimensional counter-

parts of matematerials have been investigated progressively [5,10–30]. Main mo-

tivation behind this intensive interest originates from the opportunity that the

amplitude, phase and polarization state of light can be controlled using meta-

surfaces. Controlling such properties of light has paved the door for modulating

wavefront, designing beam structure and controlling direction of light on a sub-

wavelength scale [5, 10–12]. Conceptually, phase, amplitude and/or polarization

state of light is changed abruptly over the scale of the wavelength as light traverses

such a metasurface [13, 14]. This concept is quite different from the one used in

designing conventional optical components since the required phase, amplitude

and/or polarization state changes are introduced through gradual accumulation

over at least several wavelengths in that case. Using this concept, new phenom-

ena such as anomalous reflection, anomalous refraction, strong photonic spin-Hall

effect and plasmonic Rashba effect has been observed by realizing proper meta-

surfaces [5,15,16]. The observations of anomalous reflection and refraction led to

the generalization of the laws of reflection and refraction. Implementation of this

concept has been mainly done using transmissive array metasurfaces with metal-

lic unit elements since most of the optical components function in transmissive

mode. Nevertheless, alternative implementations based on either reflective array

metasurfaces or dielectric unit elements have also been studied for overcoming

the efficiency problems occuring in several of the initial metallic transmissive ar-

ray metasurface designs. As results of these studies, both high energy conversion

of propagating waves into surface waves and anomalous reflection with high effi-

ciency have been observed [17–19]. Moreover, implementation of different types of

metasurfaces enabled observation of out-of-plane refraction, generation of optical

vortices with a variety of topological charges, manipulation of light polarization

state in a controllable manner and generation of holograms [20–25]. Furthermore,

birefringent and bianisotropic metasurfaces were also implemented [26,27].

Of particular interest to our studies is the focusing ability of metasurfaces.

This ability has also been investigated in the context of metasurfaces [27–31].

Using transmissive metallic metasurfaces, aberration-free lenses were designed

and fabricated at the center wavelength of 1.55 μm [28]. For increasing the

efficiency of aberration-free lens metasurfaces, metasurfaces were implemented

with different type of unit cells in an another study [29]. Moreover, drawbacks of

flat metasurface lenses such as off-axis aberration have also been dealt with the

design of aplanatic metasurfaces [30]. Furthermore, single achromatic metalens

3



designs have been investigated for focusing light at three different wavelengths

on the same focal plane [31].

Among their direct utilization as optical components, different types of meta-

surface, sometimes labeled as metatronics, have been studied for designing

lumped nanocircuit elements and frequency selective filters [32–34]. Of particular

interest to our studies are the reflection phase controllable metasurface designs

that were implemented for increasing the interaction between the active semicon-

ductor material close to contact and electric field [6].

The goal of this thesis work is to model and design novel metasurface architec-

tures and to propose and demonstrate new EO and IR optical components in thin

films inspired by these optical metasurfaces. Also, the proposed optical metasur-

face components is compared and contrasted against the existing conventional

approaches and the technological advantages and disadvantages given the state

of the art is identified. For achieving these purposes, we study the concept of op-

tical phase discontinuities for modifying phase, amplitude and polarization state

of light. We present our studies on understanding the physics of building blocks

used to implement metasurfaces. Also, we discuss our approach of using anti-

symmetric V-shaped antennas for optimizing the functionality of metasurfaces.

Moreover, we explain our modeling methodologies and assumptions in using these

models. Furthermore, we present our results on simulation and implementation

of the designed metasurfaces.

The rest of this thesis is organized as follows. In Chapter 2, first we provide

a background for the rest of the thesis. The concept of optical phase disconti-

nuities is progressively explored through several sections of this chapter. Also,

Pancharatnam-Berry (PB) phase is briefly summarized and a detailed deriva-

tion of the generalized Snell’s laws of reflection and refraction is provided. Main

principles used in realization of the concept of optical phase discontinuities are

summarized. Then, building blocks of metasurfaces are investigated in two differ-

ent groups (metallic and dielectric building blocks). Major emphasis is given to

metallic nanoantennas and various types of them are studied in detail. Simplified

models are developed following derivation of integral equations and these models

are used to study the scattering amplitudes and phase shifts of these metallic

nanoantennas in a large parameter space. Also, results of more realistic but
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time-consuming models are provided for a limited parameter space. Finally, re-

cent studies in dielectric nanoantennas are discussed and modeling and simulation

of silicon nanodisks that are used to design metasurface lenses are explored.

In Chapter 3, a metasurface design methodology is expressed in detail. Then,

using this design methodology, metasurface lenses, metasurface parabolic mirrors

and metasurface magnetic mirrors are designed. Full-wave simulations are per-

formed to analyze the scattered field distributions from designed metasurfaces and

expected behavior of the designed metasurface lenses and mirrors are confirmed.

In Chapter 4, the optical cross-talk problem in mid-wavelength infrared focal

plane arrays (MWIR-FPAs) is addressed using metallic metasurface microlens ar-

rays. Conventional approaches to this optical cross-talk problem are summarized

and their drawbacks are discussed. A set of asymmetrically shaped optical anten-

nas are designed and using this set microlens arrays are designed, modeled and

simulated using Lumerical FDTD. Then, the scattered field distributions from

designed microlens arrays are recorded and analyzed. Finally, the optical cross-

talk performance of metasurface microlens arrays integrated FPA’s are compared

to reference FPA systems.

In Chapter 5, the efficiency problem in metallic metasurface microlens arrays

used in MWIR-FPAs is addressed using dielectric metasurface microlens arrays.

The drawbacks of metallic metasurfaces are discussed. A set of asymmetrically

shaped optical antennas are replaced by silicon nanodisks and using this set of

silicon nanodisks, microlens arrays are designed, modeled and simulated using

Lumerical FDTD. Then, the scattered field distributions from designed microlens

arrays are recorded and analyzed. Finally, both the optical cross-talk performance

and efficiency of metasurface microlens arrays integrated FPA’s are compared to

reference FPA systems.

In Chapter 6, we conclude our thesis study by summarizing the key points and

providing the scientific contributions.
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Chapter 2

Building Blocks of Metasurfaces

Optically thin resonators can be used as the building blocks of metasurfaces.

Electromagnetic cavities [35–37], nanoparticle clusters [38–40] and plasmonic an-

tennas [41–44] are different types of optically thin resonators. Due to their widely

tailorable optical properties and the ease of fabrication, plasmonic antennas were

preferred by many research groups to design and fabricate different types of meta-

surfaces [9, 13, 14, 17, 21, 25, 27, 45–62]. However, the efficiency of transmitting

plasmonic metasurfaces are limited due to the absorption losses of metals. This

situation has led to increased attention to dielectric metasurfaces [18, 31,63–79].

In this chapter, metallic and dielectric nanoantennas that can be used as the

building blocks of metasurfaces are investigated. In Section 1, a theoretical back-

ground is provided. In Section 2, metallic nanoantennas are described in four

subsections. Each of these subsections corresponds to a different geometry of the

metallic nanoantennas and either analytic or numerical models of these antennas

are provided. In Section 3, different geometries of dielectric nanoantennas are

described and recent studies about these antennas are presented. Then, numer-

ical models of dielectric nanoantennas used to realize dielectric metasurfaces are

given and their behavior is analyzed.
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2.1 Background

This section includes three subsections that progressively explore the concept

of optical phase discontinuities. In the first subsection, a brief summary of

Pancharatnam-Berry (PB) phase, which is fundamentally related to this con-

cept, is given and various studies related to PB optic elements are discussed.

In the second subsection, a detailed derivation of the generalized Snell’s laws of

reflection and refraction is provided since these laws are the key elements to the

understanding of this concept. Then, main principles used in realization of this

concept are summarized in subsection three.

2.1.1 Pancharatnam-Berry Phase

Phase, amplitude and/or polarization state of light can be modified during the

processes of wavefront shaping, flow direction change and polarization conversion.

Generally, this modification takes place gradually and slowly as realized in the

case of conventional optical components. However, sudden modification is also

possible via the introduction of phase discontinuities over the scale of wavelength

along the optical path. This phase discontinuity or abrupt phase change can

be achieved through implementation of space variant subwavelength gratings or

arrays of resonators that have subwavelength distance to a nearest neighbor.

In his famous paper, Pancharatnam investigated the phase shift experienced

by a light beam that is going through different intermediate polarization states

and returning to its original polarization state at the end [80]. Figure 2.1 shows

the depiction of this transition on the Poincaré sphere. Red dashed lines corre-

spond to the polarization vectors while green continuous curves correspond to the

polarization state transitions that form a geodesic triangle. Although the light

beam returned to its original polarization state, it did not have the same initial

phase. Pancharatnam experimentally verified this phase shift and showed that

it is proportional to the half of the solid angle SA corresponding to the geodesic

triangle on the Poincaré sphere.

In 1987, Berry expressed the phenomena Pancharatnam showed using quantum

mechanics and showed its relation to Adiabatic phase [81]. He also mentioned
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a very significant point that constitutes the fundamental idea of Pancharatnam-

Berry (PB) optic elements and metasurfaces. The polarization changes need not

be slow, their sudden accomplishment also leads to phase shifts. This idea was

later used in several studies and PB optic elements such as space-variant polar-

ization state manipulating gratings and polarization dependent focusing lenses

were demonstrated [82,83].

S1

S2

S3

A

B C

SA

Figure 2.1: Cyclic polarization state transitions on the Poincaré sphere.

2.1.2 Generalized Snell’s Laws of Reflection and Refrac-

tion

Between two points A and B, light rays follow the path that takes the extremum

time of travel relative to neighboring points according to Fermat’s principle [84].

Figure 2.2 shows the depiction of ray reflection on a surface with zero phase gra-

dient. The straightforward derivation of the law of reflection for this surface using

Fermat’s principle is given by Equations (2.1) to (2.4). In these equations, the let-

ters a, b, d and x are the corresponding heights and distances shown in Figure 2.2

while Θi and Θr are the incidence and reflection angles, respectively.
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a

b

 d 
 x    d – x 

ni

Figure 2.2: Depiction of the law of reflection.

L =
√
a2 + x2 +

√
b2 + (d− x)2 (2.1)

dL

dx
=

1

2

2x√
a2 + x2

+
1

2

2(d− x)(−1)√
b2 + (d− x)2

= 0 (2.2)

x√
a2 + x2

=
(d− x)√

b2 + (d− x)2
(2.3)

sin θi = sin θr (2.4)

Introduction of an abrupt phase shift along the surface perturbs the law of re-

flection. Figure 2.3 shows the depiction of ray reflection from such a surface

with nonzero phase gradient. When a planewave having an incidence angle of

Θi reflects from this surface, the phase difference between two paths that are

infinitesimally close to the actual path taken by the reflecting wave should be

zero. Mathematical formulation of this situation is given in Equation (2.5). In

this equation, k0 is the wavenumber of light and ni is the refractive index while

Θi and Θr are the incidence and reflection angles, respectively. φ and (φ + dφ)

correspond to the abrupt phase shifts at the specified locations of the surface. dx

is the distance between two points that the two infinitesimally close paths cross

the interface.
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r

ni

ddx x

Figure 2.3: Depiction of the law of generalized reflection.

[k0ni sin(θi)dx+ (φ+ dφ)]− [k0ni sin(θr)dx+ φ] = 0 (2.5)

If the phase gradient along the surface is designed to be constant, then Equa-

tion (2.5) results in the generalized Snell’s law of reflection. This law is provided

in Equation (2.6) where λ0 is the wavelength of light. The phenomena predicted

by this law are fundamentally different from the specular reflection since there

is a nonlinear relation between the angles of incidence and reflection. This law

also implies that there is a critical angle above which the reflected wave becomes

evanescent. This special angle is given by Equation (2.7).

sin(θr)− sin(θi) =
λ0

2πni

dφ

dx
(2.6)

θec = sin−1(1− λ0
2πni

∣∣∣∣dφdx
∣∣∣∣) (2.7)

Figure 2.4 illustrates the ray refraction through a surface with zero phase gra-

dients between two media having different refractive indices. The derivation of

the law of reflection for this surface using Fermat’s principle is given by Equa-

tions (2.8) to (2.10). In these equations, the letters a, b, d and x are the cor-

responding heights and distances shown in Figure 2.2 while Θi and Θt are the

incidence and transmittance angles, respectively. ni and nt are the refractive

indices of the media and t is the time of travel.
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Figure 2.4: Depiction of the law of refraction.

t = ni
√
a2 + x2 + nt

√
b2 + (d− x)2 (2.8)

dt

dx
= ni

x√
a2 + x2

− nt
d− x√

b2 + (d− x)2
= 0 (2.9)

ni sin θi = ntsinθt (2.10)

Introduction of an abrupt phase shift along the surface perturbs the law of re-

fraction. Figure 2.5 shows the depiction of ray refraction through such a surface

with nonzero phase gradient. When a plane wave having an incidence angle of Θi

refracts through this surface, the phase difference between two paths that are in-

finitesimally close to the actual path taken by the refracting wave should be zero.

Mathematical formulation of this situation is given in Equation (2.11). In this

equation, k0 is the wavenumber of light. ni and nt are the refractive indices of the

media while Θi and Θt are the incidence and transmittance angles respectively.

φ and (φ + dφ) correspond to the abrupt phase shifts at the specified locations

of the surface. dx is the distance between two points that the two infinitesimally

close paths cross the interface.
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Figure 2.5: Depiction of law of generalized refraction.

[k0ni sin(θi)dx+ (φ+ dφ)]− [k0nt sin(θt)dx+ φ] = 0 (2.11)

If the phase gradient along the surface is designed to be constant, then Equa-

tion (2.12) leads to the generalized Snell’s law of refraction. This law is given

in Equation (2.12) where λ0 is the wavelength of light. This equation states that

the angle of refraction can be tuned by just changing the phase gradient. Also,

the orientation of ray with respect to the surface normal becomes critical even if

it has the same angle of incidence. This situation results in two different critical

angles given by Equation (2.13).

ntsin(θt)− nisin(θi) =
λ0
2π

dφ

dx
(2.12)

θc = sin−1(±nt
ni
− λ0

2πni

dφ

dx
) (2.13)

2.1.3 Concept of Optical Phase Discontinuities

For achieving the nonzero phase gradient along a surface, an array of optically

thin resonators with subwavelength separation or subwavelength space-variant

polarization-state manipulators shall be used [5, 85]. In the former case, the

amplitudes of the scattered field by these resonators shall ideally be equal. In the

latter case, the incoming beam is transmitted through a space-variant oriented

grooves and the transmission coefficient should be close to one at all points.

In this thesis, we studied optically thin resonators since they offer a more

flexible and simpler design methodology. Therefore, this part of the thesis only
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involves the realization of the optical phase discontinuities concept by using op-

tically thin resonators. The phenomenon that enables the usage of resonators as

building blocks of metasurfaces is the phase shift between the incident and emit-

ted fields across a resonance. The frequency response of a resonator depends on

factors such as geometry and material characteristics. So, for designing a meta-

surface at a certain wavelength regime, one should decide on the appropriate

material to be used and then the required phase gradient can be formed by tun-

ing the geometries of the resonators at specified locations. However, when tuning

the geometry of the resonator chosen, one should consider several factors and

check if these factors are satisfied. The first of these factors is that the scattering

amplitude of these resonators shall be equal ideally as previously stated in the

beginning of this subsection. In addition to this requirement, the phase shifts of

the chosen resonators shall also cover the whole 0-to-2π range. This requirement

is necessary for full control of the wavefront of light. Finally, another factor used

in choosing the type of the resonator is the magnitude of the scattering ampli-

tude and it should be as high as possible for not decreasing the efficiency of the

metasurface to be realized.

2.2 Metallic Nanoantennas

Metallic nanoantennas are the optical analogues of the radiowave and microwave

antennas since they have very similar properties except the additional properties

resulting from their small size and resonance condition. In the radiowave and

microwave regions of the electromagnetic spectrum, the control and modification

of electromagnetic waves by transmitting and reflecting arrays is a well-known

technique. Nevertheless, this well-known technique was not a feasible option for

the visible and infrared region of the spectrum where the optical components

operate. The reason for this situation is the necessity of fabricating antennas

having sizes of several hundreds nanometers, which is in the wavelength scale in

these regions. Recently, tools such as ion-beam lithography and electron-beam

lithography have removed this obstacle and paved the way for designing optical

components using this technique.

Primary function of the metallic nanoantennas is converting the optical ra-

diation into localized energy and then re-radiating this energy efficiently with
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a specified phase response. In the radiowave and microwave regions, this func-

tionality is achieved by antennas on the order of λ/10 to λ/100 (where λ is the

wavelength of electromagnetic wave). However, in the optical region this fraction

of wavelength can correspond to a size of few nanometers. In this length scale,

the interaction between light and matter is quantized and the penetration of light

into metals cannot be neglected. The finite electrons in the metal cannot create

a simultaneous electronic response to the driving field and this delay results in a

skin depth that is typically larger than the half diameter of the antenna. There-

fore, the electrons of the metal respond to a shorter wavelength than that of the

driving field. This wavelength is generally labeled as the effective wavelength and

is given by Equation (2.14)

λeff = c1 + c2

(
λ

λp

)
(2.14)

where λp is the plasma wavelength while c1 and c2 are geometric constants. The

length of a metallic half-wave antenna is determined by half effective wavelength

given by this equation. The ratio between the driving field’s wavelength and this

effective wavelength generally varies between 2 and 5 depending on the geometric

factors [42].

2.2.1 Rod Nanoantennas

In this subsection, amplitude and phase responses of the simplest metallic nanoan-

tenna, the rod antenna, are provided. For obtaining the mentioned behavior, the

rod antenna is modeled with the method of moments (MoM). For obtaining fast

results and scanning a large parameter space, a simplified one-dimensional ap-

proximation is used.

2.2.1.1 Derivation of the Integral Equation

In the derivation of the integral equation governing the behavior of the rod an-

tenna, thin-wire approximation is used. According to this approximation, both

the rod antenna’s length and the excitation wavelength are much longer than the

radius of the antenna. The simplified geometry of the rod antenna using this
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approximation and a reference coordinate system are depicted in Figure 2.6. In

this figure, h is the antenna length and a is the antenna radius.

z

x

y

z’

I(z’)

r’

r

A(r)

a

h

Figure 2.6: Thin-wire model of a rod antenna.

An antenna, whether transmitting or receiving, is always driven by an external

source field. In receiving mode, the external source field is called the incident

field (Einc). The incident field induces current on the antenna and the induced

current generates its own field (Escat). Then, the total field, which is the sum

of the incident and generated fields, is given by Equation (2.15). For a perfect

electric conductor (PEC) antenna, the tangential component of the total electric

field should be zero as given in Equation (2.16). Since the direction and the

polarization of the incident field is known, the projection of the incident field on

the antenna can be found. Then, the scattered field can be defined in terms of

the incident field using Equation (2.17).

Etot = Einc + Escat (2.15)

t̂ · Etot = 0 (2.16)

t̂ · Escat = −t̂ · Einc (2.17)
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An explicit expression for the scattered field is given by Equation (2.18) for an

antenna in a homogeneous medium with an effective refractive index. In this

expression, w is the radial frequency of the field; µo and εo are the free space

permeability and permittivity, respectively; εr is the permittivity of the effec-

tive medium where the antenna is buried; k is the wavenumber; A is the vector

magnetic potential; and ∇ and ∇· are the gradient and divergence operators,

respectively.

Escat =
1

jwµoεoεr

[
∇(∇ · A) + k2A

]
(2.18)

Vector magnetic potentials are related to the induced current on the arms of the

rod antenna and their direction is parallel to the induced current direction. In

the limit of a thin antenna where the radius goes to zero, the reduced Kernel

expression can be used. For such a case, vector magnetic potential is related to

the induced current as given in Equation (2.19). In this equation, ẑ is the unit

vector tangential to the antenna. Rr is the effective distance between the radiated

point and the source point.

Ā =
µo
4π

∫
h

ẑI(z′)dz′
e−jkRr

Rr

(2.19)

Combining Equation (2.17) and Equation (2.19) into Equation (2.18) and rear-

ranging some of the terms, the Pocklington-type integral equation is obtained.

− j4πwεoεrẑ · Ēinc = ∇(∇ ·
∫
h

ẑI(z′)dz′
e−jkRr

Rr

) + k2
∫
h

ẑI(z′)dz′
e−jkRr

Rr

(2.20)

where Rr is given by Equation (2.21). By applying the gradient and divergence

operators and rearranging some of the constants, one can end up with Equa-

tion (2.22).

Rr =

√
(z − z′)2 + a2 (2.21)

2kEinc(z) =
(
∂2z + k2

) jη
2π

h
2∫

−h
2

e−jkRr

Rr

I(z′)dz′ (2.22)
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2.2.1.2 MoM Numerical Solution

The objective of the previous section is to derive the Pocklington-type integral

equation by applying the thin-wire approximation. However, the resulting Equa-

tion (2.22) generally does not have an analytical solution, hence numerical solu-

tions must be implemented to solve this equation. In this subsection, MoM is

numerically applied for solving this equation.

-M

0

1

-1

D

M

z

I0

I1

I-1

IM

I-M

Figure 2.7: Current discretization on a rod antenna.

The rod antenna is discretized into N (2×M + 1) slices such that the current

distribution is sampled at locations where the spatial variable z′ equals to num-

bers such as {−M,−M + 1, ...,−1, 0, 1,M − 1,M}. In Figure 2.7 a schematic

representing this discretization process of the rod antenna is provided. D is the

sampling period, which is given by Equation (2.23).

D =
h

N
(2.23)
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For convenience, Equation (2.22) can be rearranged as follows:

2kEinc(z) =
(
∂2z + k2

)
V (z) (2.24)

where V (z) is given by Equation (2.25)

V (z) =

h
2∫

−h
2

κ(z, z′)I(z′)dz′ (2.25)

κ(z, z′) =
jη

2π

e−jk
√

(z−z′)2+a2√
(z − z′)2 + a2

(2.26)

Discretization of Equation (2.25) leads to Equation (2.27) while expansion of

the current distribution into a sum of weighted Dirac functions leads to Equa-

tion (2.28). Then, by using these two equations one can obtain Equation (2.29).

V (zn) =

h
2∫

−h
2

κ(zn, z
′)I(z′)dz′ (2.27)

I(z′) =
M∑

m=−M

Imδ(z
′ − zm) (2.28)

Vn =
M∑

m=−M

κ(zn, zm)Im (2.29)

The second derivative with respect to z can now be replaced by the finite difference

counterpart that is given by the following equation:

∂2

∂z2
V (zn) =

V (zn+1)− 2V (zn) + V (zn−1)

D2
(2.30)

Equation (2.24) can be rewritten using Equation (2.30) and rearranging some of

the constants with d = 2k and α = 1− k2D2

2
,

Vn+1 − 2αVn + Vn−1 = EndD
2 (2.31)

Now, the discrete form of the Pocklington-type integral equation can be written as

follows, in which double bars over head denote matrices while vectors are denoted

by single bars over head and variables without a bar over head are just scalars:

AκI = QdE (2.32)
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where A is given by Equation (2.33) and Q is given by Equation (2.34).

A =
1

D2



0 0 0 0 0 . . . 0

1 −2α 1 0 0 . . . 0

0 1 −2α 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 −2α 1 0

0 . . . 0 0 1 −2α 1

0 . . . 0 0 0 0 0


(2.33)

Q =



0 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 0 1 0 0

0 . . . 0 0 0 1 0

0 . . . 0 0 0 0 0


(2.34)

All of the matrices used in Equation (2.32) are N × N square matrices. First

and last rows of these matrices are purposefully added as zero vectors for making

these matrices square. However, both of these rows and the first and last columns

of these matrices can be removed since the first and last elements of the current

vector (I) must be 0. This situation is a consequence of the end conditions

stating that the current distribution must vanish at the physical ends of the

antenna. After removing these rows and columns, the current distribution on the

rod antenna can be find using Equation (2.35) where Ĩ is the reduced current

distribution and zeros must be added as the first and last elements. Z is given

by Equation (2.36) where all of the variables are matrices.

Ĩ = Z−1dẼ (2.35)

Z = AκQ (2.36)
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Figure 2.8: Amplitude of current distributions on rod antennas.

For finding the current distribution on a rod antenna using MoM, we first find

the projection of the incident field on the rod antenna. Then, we calculate the

coefficients including α and D. Using these coefficients matrix A is calculated.

Then, the impedance matrix Z is calculated using the reduced kernel Rr and

multiplied by A. Finally, the inverse of the product of A and Z is multiplied

by the vector corresponding to the projection of the incident field on the rod

antenna for obtaining the current distribution. In Figure 2.8 amplitudes of the

current distributions on the rod antennas of varying length are provided. The

antenna length is changed from 0.25 to 3.0 wavelength in obtaining the data in

this figure with MoM simulations. First, second and third order resonances are

clearly observed at the 0.5, 1.5 and 2.5 wavelength long antennas. The phase of

the current distributions are also provided in Figure 2.9.
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Figure 2.9: Phase of current distributions on rod antennas.

In order to account for the finite conductivity of the metals, the boundary

condition given in Equation (2.16) should be modified as given by:

ẑ · [Escat + Einc] =
1− j
2πa

√
µ0ω

2σ
I (2.37)

where a is the antenna radius, µ0 is the permeability, ω is the radial frequency

of the incident field, and σ is the AC conductivity of the metal. AC conductivity

of the metal can be calculated from the DC conductivity of the metal when the

frequency of interest is given and the electron relaxation lifetime of the metal is

known.

2.2.1.3 Radiation into Farfield

Finding the scattered fields of a metallic rod antenna using MoM is a problem

that consists of two parts. Obtaining the current distribution along the antenna

for a known incident field is the first part of this problem. For the second part,

this current distribution should be re-radiated in order to find the scattered fields.

In this subsection, solution to this part of the problem is provided.

The farfield radiation vector is defined as the three-dimensional spatial Fourier
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transform of the current density [86] and is given by Equation (2.38).

F (k) =

∫
V

J(r′)ejk·r
′
d3r′ (2.38)

where J(r′) is the current density on the antenna.This quantity depends on the

wavenumber and the directional unit vector r̂ which is uniquely defined by the

spherical coordinate angles θ and φ. For a thin-linear antenna, current density

can be expressed as follows:

J(r) = ẑI(z)δ(x)δ(y) (2.39)

where δ(x) and δ(y) are the Dirac functions of variable x and y, respectively, while

I(z) is the current distribution. Substituting Equation (2.39) into Equation (2.38)

radiation vector of rod antenna is obtained:

F = ẑ

∫ h
2

−h
2

I(z′)ejkzz
′
dz′ (2.40)

where kz = k cos θ is the amplitude of the z component of the wavevector (which

clearly shows the only angular dependence of radiation vector to the angular

variable θ). Electric and magnetic field vectors can be obtained from radiation

vector. The relation between electric field and radiation vector is:

E = −jkηe
−jkr

4πr

[
θ̂Fθ + φ̂Fφ

]
(2.41)

where η is the intrinsic impedance of the medium that surrounds the antenna.

Inserting Equation (2.40) into Equation (2.41) relation between the scattered

electric field and the current distribution on a rod antenna is obtained as in Equa-

tion (2.42). By taking the absolute square of this equation and dividing the result

by double the intrinsic impedance of the medium, the radiation intensity of rod

antennas can be found as given in Equation (2.43). Subsequently, gain pattern

of rod antennas can be obtained by normalizing this radiation intensity. In Fig-

ure 2.10, normalized power gain pattern of several rod antennas are given. The

lengths of these antennas are varied between 0.5λ and 3.0λ with incremental steps

of 0.5λ. The current distributions on these antennas are calculated using MoM

and the scattered fields are obtained by re-radiating these current distributions

using Equation (2.42).

Ē = θ̂jkη
e−jkr

4πr
sin θ


h
2∫

−h
2

I(z′)ejkz
′ cos θdz′

 (2.42)

22



Irad =
ηk2

32π2
|F |2sin2θ (2.43)

Figure 2.11 shows the variation of amplitude and phase response of a PEC rod

antenna located in vacuum with respect to its length. The antenna is excited

by an incident field having wavevector normal to the axis of the antenna. Far

field data along the wavevector direction is obtained by MoM. The amplitude

response of the antenna peaks at the resonance condition of L = λeff/2 and

the phase response of the antenna changes by an amount equal to π across this

resonance condition. However, this amount of phase shift is not sufficient for full

control of the wavefront of light. For full control of the wavefront, 0− 2π phase

shift coverage is required. Therefore, rod antennas cannot be used as building

blocks of metasurfaces.

Figure 2.10: Normalized gain patterns of rod antennas.
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Figure 2.11: Calculated phase and amplitude responses of PEC rod antennas.

2.2.2 L-shaped Nanoantennas

In this subsection, amplitude and phase responses of L-shaped metallic nanoan-

tennas are analyzed in detail. For analyzing the mentioned properties, the be-

havior of this nanoantenna is simulated using MoM methods. For obtaining

fast results and scanning a large parameter space, a simplified one-dimensional

model is simulated with the MoM method. Unlike rod nanoantennas, L-shaped

nanoantennas have phase shift responses that cover the whole 0-2π range thereby

allowing for a full modification of the wavefront of light.

2.2.2.1 Derivation of the Integral Equation

In the derivation of the integral equation governing the behavior of an L-shaped

nanoantenna, thin-wire approximation is used. According to this approximation,

antenna length and excitation wavelength are much longer than the radius of the

nanoantenna. The simplified geometry of the L-shaped nanoantenna using this

approximation and a reference coordinate system are depicted in Figure 2.12. In
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ŷ
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ŝ
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I(z’)

Figure 2.12: Depiction of simplified geometry of L-shaped nanoantennas.

this figure, lengths of the arms of L-shaped nanoantenna can be different and are

labeled by symbols (L1 and L2). The angle between these two arms is fixed and

is equal to 90◦. a is the radius of the nanoantenna while α is the angle between

the incident electric field and the symmetry axis of the nanoantenna which is

labeled as ŝ. l′ is a spatial variable on the nanoantenna where the source point

is located while l is an another spatial variable where the observation point is

located. Finally, A(r) is the magnetic potential vector resulting from the current

distribution on the nanoantenna.

The total field, which is described in Section 2.2.1.1, is given by Equation (2.15)

for the L-shaped nanoantenna. For PEC antennas, the tangential component

of this total field should be zero on the antennas as given by Equation (2.16).

Rearranging this equation, tangential component of the unknown scattered field

can be written in terms of the known incident field as given by Equation (2.17).

This scattered field depends on the vector magnetic potential and its dependence

for an antenna in a homogeneous medium is given by Equation (2.18).

Vector magnetic potentials are related to the induced current on the arms of

the antennas. In the limit of a thin antenna where the radius goes to zero, reduced
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Kernel expression can be used. For this limit, vector magnetic potential is related

to the induced current as given in Equation (2.44) for an L-shaped nanoantenna.

Ā =
µo
4π

L1∫
−L2

t̂I(l′)dl′
e−jkR

L
r

RL
r

(2.44)

where t̂ is expressed as follows:

t̂ = x̂H(−l) + ŷH(l) (2.45)

where H(l) is the Heaviside function whose output is 1(0) when its input is

positive(negative). Using Equation (2.17) and Equation (2.44) in Equation (2.18)

and rearranging some of the terms, the Pocklington type integral equation is

obtained for an L-shaped nanoantenna and given by Equation (2.46). However,

this equation does not have an analytical solution and a numerical solution must

be used to solve this equation for obtaining the induced current distribution on

this nanoantenna.

− j4πwεoεr t̂ · Ēinc = t̂ ·

∇(∇ ·
L1∫

−L2

t̂I(l′)dl′
e−jkR

L
r

RL
r

) + k2
L1∫

−L2

t̂I(l′)dl′
e−jkR

L
r

RL
r


(2.46)

where RL
r is the reduced effective distance for the L-shaped nanoantenna. In

order to calculate the reduced effective distance, two different conditions should

be considered for the L-shaped nanoantenna:

1. When the observation and source points are on the same arm (l and l′ have

the same sign)

2. When the observation and source points are on the different arms (l and l′

have different signs)

For case 1, Equation (2.47) should be used for the L-shaped nanoantenna. For

case 2, Equation (2.48) should be used for the L-shaped nanoantenna.

Rr =

√
a2 + (l − l′)2 (2.47)

where l and l′ should have same signs since they are on the same arm.

RL
r =
√
a2 + l2 + l′2 (2.48)

26



where l and l′ should have different signs since they are on different arms.

For an antenna that has tangential unit vectors lying in only x̂ and ŷ directions,

gradient of divergence of the vector magnetic potential is given by Equation (2.49)

or Equation (2.50).

∇(∇ · A) · ŷ =

[
∂

∂y

(
∂

∂y
Ay +

∂

∂x
Ax

)]
(2.49)

∇(∇ · A) · x̂ =

[
∂

∂x

(
∂

∂x
Ax +

∂

∂y
Ay

)]
(2.50)

For the L-shaped nanoantenna, the arm along −x̂ direction is labeled as Γ1

and the other arm is labeled as Γ2 meaning arm 1 and arm 2, respectively. In

order to find the vector magnetic potential affecting arm 1 of this antenna, x̂

and ŷ directed components of the vector magnetic potential shall be found. Only

the current on arm 2 creates a vector magnetic potential that has x̂ component

and flow direction of this current is chosen to be the x̂ direction as depicted in

Figure 2.12. The vector magnetic potential due to this current is given as follows:

A1x =
µo
4π

∫ 0

−L2

(I(l′))
e−jkR

L
rd

RL
rd

dl′ (2.51)

where RL
rd is defined by Equation (2.52). x and y are the observation point

coordinates. l′ is the source point and its sign should be negative when used in

calculations since sampling points on arm 2 is defined for values between 0 and

−L2 where L2 is the length of arm 2.

RL
rd =

√
a2 + (x− l′)2 + y2 (2.52)

The derivative of the kernel e−jkRL
rd

RL
rd

with respect to x is given by the following

equation and it should be evaluated at x equals 0 since the source point is on the

antenna.
(
RL
rd

)′
is given by Equation (2.54) for L-shaped nanoantenna.

∂

∂x

e−jkR
L
rd

RL
rd

=

(
−jke

−jkRL
rd

RL
rd

− e−jkR
L
rd

(RL
rd)

2

)(
RL
rd

)′
(2.53)

∂RL
rd

∂x
=

1/2× 2(x− l′)√(
a2 + (x− l′)2 + y2

) =
−l′

RL
rd

(2.54)
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Using Equation (2.53) and Equation (2.54) in Equation (2.51), explicit expression

for x component of the vector magnetic potential on arm 1 is obtained:

∂A1x

∂x
=
µo
4π

∫ 0

−L2

I(l′)
e−jkR

L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′dl′ (2.55)

where RL
rd is given by Equation (2.48) if y is replaced by l.

For the L-shaped nanoantenna, only the current on arm 1 creates a vector

magnetic potential that has ŷ directed component. Flow direction of this current

is chosen to be plus ŷ direction. The vector magnetic potential due to this current

is given as follows:

A1y =
µo
4π

∫ L1

0

I(l′)
e−jkR

L
rs

RL
rs

dl′ (2.56)

where RL
rs is defined by the following equation. l′ is the source point and its sign

is positive as a result of the coordinate system choice. Note that x is 0 on arm 1,

hence source point is only represented by y.

RL
rs =

√
a2 + (y − l′)2 (2.57)

In Figure 2.12, the orientation of the incident field is given with respect to the

antenna symmetry axis. α is defined as the incidence angle and taken counter

clockwise direction from the symmetry axis of the antenna. Incident field propa-

gation direction is assumed to be out of page(+z) direction. Boundary condition

for arm 1 of L-shaped nanoantenna with the assumption of antenna being a per-

fect electric conductor is given as follows:

− Einc cos(
π

4
+ α) =

1

jwµoεoεr

[(
∂2

∂y2
+ k2

)
A1y +

∂

∂y

(
∂A1x

∂x

)]
(2.58)

The constants in Equation (2.58) can be re-arranged as follows:

− 1

jwµoεoεr

µo
4π

=
1

2k

jη

2π
(2.59)

where η is the effective intrinsic impedance of the effective homogeneous medium

where the antenna is placed. Then, the boundary condition for arm 1 can be
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written as follows:

2kEinc cos(
π

4
+ α) =

jη

2π

[ ∂2
∂y2

+ k2
] L1∫

0

I(l′)
e−jkR

L
rs

RL
rs

dl′

+

jη

2π

 ∂

∂y

0∫
−L2

I(l′)
e−jkR

L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′dl′


(2.60)

Rearranging Equation (2.60) and replacing variable y with l, the following equa-

tion is obtained:

2kEinc cos(
π

4
+ α) =

jη

2π

[ ∂2
∂l2

+ k2
] L1∫
−L2

I(l′)κ1(l, l
′)dl′

+

jη

2π

 ∂

∂l

L1∫
−L2

I(l′)κ2(l, l
′)dl′


(2.61)

where κ1 is the integral kernel of the integration that will be differentiated twice

and given by Equation (2.62). κ2 is the integral kernel of the integration that

will be differentiated only once and given by Equation (2.63).

κ1(l, l
′) =

e−jkR
L
rs

RL
rs

H(l′) (2.62)

where H symbolizes the Heaviside function whose output is 1 when its input is

positive. RL
rs is given by Equation (2.47).

κ2(l, l
′) =

e−jkR
L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′H(−l′) (2.63)

where RL
rd is given by Equation (2.48).

For arm 2, only the current on arm 1 creates a vector magnetic potential that

has y component and flow direction of this current is chosen to be y direction. The

vector magnetic potential due to this current is given by the following equation:

A2y =
µo
4π

∫ L1

0

I(l′)
e−jkR

L
rd

RL
rd

dl′ (2.64)
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where RL
rd is defined by the following equation. x and y are the observation

point coordinates. l′ is the source point and its sign is positive as a result of the

coordinate system choice.

RL
rd =

√
a2 + x2 + (y − l′)2 (2.65)

The derivative of the integral kernel of Equation (2.64) with respect to y is given

by the following equation and it should be evaluated for y being equal to 0.

∂

∂y

e−jkR
L
rd

RL
rd

=

(
−jke

−jkRL
rd

RL
rd

− e−jkR
L
rd

(RL
rd)

2

)
(RL

rd)
′ (2.66)

The derivative of the effective distance is calculated for the case of y being equal

to 0 and the result is given by the following equation:

∂RL
rd

∂y
=

y − l′√
a2 + x2 + (y − l′)2

=
−l′

RL
rd

(2.67)

Using Equation (2.66) and Equation (2.67) in Equation (2.64), the derivative

of the y component of the vector magnetic potential with respect to variable

y can be obtained as given in Equation (2.68). Effective distance is given by

Equation (2.69) for the case of y being equal to 0.

∂A2y

∂y
=
µo
4π

∫ L1

0

I(l′)
e−jkR

L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′dl′ (2.68)

RL
rd =

√
a2 + x2 + l′2 (2.69)

Only the current on arm 2 creates a vector magnetic potential that has x com-

ponent and flow direction of this current is chosen to be negative x direction. The

vector magnetic potential due to this current is given by the following equation:

A2x =
µo
4π

∫ 0

−L2

I(l′)
e−jkR

L
rs

RL
rs

dl′ (2.70)

where RL
rs is defined by the following equation. l′ is the source point and its sign

is negative as a result of the coordinate system choice. Note that y is 0 on arm

2, hence source point is only represented by x.

RL
rs =

√
a2 + (x− l′)2 (2.71)
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Boundary condition for arm 2 with the assumption of antenna being a perfect

electric conductor is given by the following equation:

− Einc cos(
3π

4
+ α) =

1

jwµoεoεr

[(
∂2

∂x2
+ k2

)
A2x +

∂

∂x

(
∂A2y

∂y

)]
(2.72)

The constants in Equation (2.72) can be re-arranged as follows.

1

jwµoεoεr

µo
4π

= − 1

2k

jη

2π
(2.73)

where η is the effective intrinsic impedance of the homogeneous medium where

the antenna stands. Then, the boundary condition for arm 2 can be written as

follows:

2kEinc cos(
3π

4
+ α) =

jη

2π

[ ∂2
∂x2

+ k2
] 0∫
−L2

I(l′)
e−jkR

L
rs

RL
rs

dl′

+

jη

2π

 ∂

∂x

L1∫
0

I(l′)
e−jkR

L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′dl′


(2.74)

Rearranging Equation (2.74) and replacing variable x with l, the following equa-

tion is obtained:

2kEinc cos(
3π

4
+ α) =

jη

2π

[ ∂2
∂l2

+ k2
] L1∫
−L2

I(l′)κ3(l, l
′)dl′

+

jη

2π

 ∂

∂l

L1∫
−L2

I(l′)κ4(l, l
′)dl′


(2.75)

where κ3 is the integral kernel of the integration that will be differentiated twice

and given by Equation (2.76). κ4 is the integral kernel of the integration that

will be differentiated only once and given by Equation (2.77).

κ3(l, l
′) =

e−jkR
L
rs

RL
rs

H(l′) (2.76)

where H symbolizes the Heaviside function whose output is 1 when its input is

positive. RL
rs is given by Equation (2.47).

κ4(l, l
′) =

e−jkR
L
rd

(RL
rd)

3 (1 + jkRL
rd)l

′H(l′) (2.77)
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where RL
rd is given by Equation (2.48).

Combining the boundary conditions for both arms of the L-shaped nanoan-

tenna, one can obtain the following equation:

2kEinc

[
cos(

π

4
+ α)H(l) + cos(

3π

4
+ α)H(−l)

]
=

jη

2π

[ ∂2
∂l2

+ k2
] L1∫
−L2

I(l′)κ1(l, l
′)dl′

+

jη

2π

 ∂

∂l

L1∫
−L2

I(l′)κ2(l, l
′)dl′


(2.78)

Where κ1 and κ2 are given by Equation (2.79) and Equation (2.80).

κ1(l, l
′) =

e−jkR
L
rs

RL
rs

[H(l)H(l′) +H(−l)H(−l′)] (2.79)

where RL
rs is given by Equation (2.47).

κ2(l, l
′) = (1 + jkRL

rd)
e−jkR

L
rd

(RL
rd)

3 l
′ [H(l)H(−l′) +H(−l)H(l′)] (2.80)

where RL
rd is given by Equation (2.48).

2.2.2.2 MoM Numerical Solution

The Pocklington type integral equation Equation (2.78) does not have an an-

alytical solution, hence numerical solutions must be implemented to solve this

equation. In this subsection, MoM is applied for solving this equation. The

antenna is discretized into N (N = N1 +N2) parts such that the curvilinear vari-

able l′ is sampled at points {−N2,−N2 + 1, ...,−1, 1, ..., N1 − 1, N1}. Figure 2.13

contains a schematic representing the discretization of the antenna. D is the

sampling period which is given by the following simple relation:

L1 + L2

N − 1
(2.81)
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Figure 2.13: Current discretization on an L-shaped nanoantenna.

After discretization the integration parts of the Equation (2.78) are represented

by discrete functions V 1[ln] and V 2[ln] which are given as follows:

V (i)[ln] =
jη

2π


L1∫

−L2

I(l′)κ(i)(ln, l
′)dl′

 (2.82)

The current distribution on the antenna is expanded into a sum of weighted Dirac

functions:

I(l′) =

N1∑
m=−N2

Imδ(l
′ − lm) (2.83)

When this weighted distribution is used in Equation (2.82), the following relation

is obtained:

Vn
(i) =

N1∑
m=−N2

κ(i)nmIm (2.84)

κ
(1)
nm and κ

(2)
nm are given by the following equations:

κ(1)nm =
jη

2π

e−jkR
L
rs

RL
rs

[H(ln)H(lm) +H(−ln)H(−lm)] (2.85)

κ(2)nm =
jη

2π
(1 + jkRL

rd)
e−jkR

L
rd

(RL
rd)

3 lm [H(−ln)H(lm) +H(ln)H(−lm)] (2.86)
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First and second order derivatives of V (i)[ln] are given by Equation (2.87) and

Equation (2.88) where finite difference schemes are used to convert derivatives in

the integral equation into sums.

∂2

∂l2
V 1(l) =

V 1
n+1 − 2V 1

n + V 1
n−1

D2
(2.87)

∂

∂l
V 2(l) =

V 2
n+1 − V 2

n−1

2D
(2.88)

Equation (2.78) can be rewritten after discretization by using Equation (2.87)

and Equation (2.88) after rearranging some of the constants such as d = 2k and

α = 1− k2D2

2
:

1

D2

(
V 1
n+1 − 2αV 1

n + V 1
n−1
)

+
1

2D
(V 2

n+1 − V 2
n−1) = dEn (2.89)

where En is the discretized (normalized) incident field projection on the antenna

and given by the following equation:

En = cos(
π

4
+ α)H(ln) + cos(

3π

4
+ α)H(−ln) (2.90)

Now, the discrete form of the Pocklington type integral equation can be written

as follows: [
Aκ(1) + Cκ(2)

]
I = QdE (2.91)

where A is given by Equation (2.92), C is given by Equation (2.93) and Q is given

by Equation (2.94).

A =
1

D2



0 0 0 0 0 . . . 0

1 −2α 1 0 0 . . . 0

0 1 −2α 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 −2α 1 0

0 . . . 0 0 1 −2α 1

0 . . . 0 0 0 0 0


(2.92)

C =
1

2D



0 0 0 0 0 . . . 0

−1 0 1 0 0 . . . 0

0 −1 0 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 −1 0 1 0

0 . . . 0 0 −1 0 1

0 . . . 0 0 0 0 0


(2.93)
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Q =



0 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 0 1 0 0

0 . . . 0 0 0 1 0

0 . . . 0 0 0 0 0


(2.94)

All of the matrices used in Equation (2.91) are N ×N square matrices. First and

last rows of these matrices are purposefully added as zero vectors for making these

matrices square. However, both of these rows and first and last columns of these

matrices can be removed since the first and last elements of the current vector

(I) must be 0. This situation is a consequence of the end conditions which state

that the current distribution must vanish at the physical ends of the antenna.

After removing these rows and columns, current distribution on the L-shaped

nanoantenna can be find using Equation (2.95) where I is the reduced current

distribution and zeros must be added as the first and last elements. Z is given

by Equation (2.96)

I = dZ−1E (2.95)

Z = AκQ (2.96)
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Figure 2.14: Amplitudes of the current distributions on L-shaped nanoantennas
with symmetric excitation.

Figure 2.15: Amplitudes of the current distributions on L-shaped nanoantennas
with antisymmetric excitation.
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For finding the current distribution on an L-shaped nanoantenna using MoM,

we first find the projection of the incident field on the L-shaped nanoantenna.

Then, we calculate the coefficients such as α and D. Using these coefficients

matrix A and C are calculated. Then, the impedance matrix Z1 and Z2 are

calculated using the reduced kernels Rrd and Rrs and multiplied by A and C,

respectively. Finally, the inverse of the summation of the multiplication of A and

Z1 and the multiplication of C and Z2 is multiplied by the vector corresponding

to the projection of the incident field on the L-shaped nanoantenna for obtaining

the current distribution.

In Figure 2.14 amplitudes of the current distributions on L-shaped nanoan-

tennas of varying arm lengths are provided for the case of symmetric excitation.

In the symmetric excitation, the polarization of the incident field has the same

direction of the antenna symmetry axis. For this excitation, the arms of the an-

tennas act as rod antennas of length L1 and L2 and their resonance conditions

occur proportional to these lengths.

In Figure 2.15 amplitudes of the current distributions on L-shaped nanoanten-

nas of varying arm lengths are provided for the case of antisymmetric excitation.

In the antisymmetric excitation, the polarization of the incident field has a di-

rection that is orthogonal to the antenna symmetry axis. For this excitation, the

antennas act similar to rod antennas of length L and their resonance condition

occur proportional to this length. The total antenna lengths are varied from

1.2 to 3.2 wavelength in obtaining the data in these figures with MoM simula-

tions. The phase of the current distributions are also provided in Figure 2.16 and

Figure 2.17 for the cases of symmetric and antisymmetric excitations.
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Figure 2.16: Phase of the current distribution on a L-shaped nanoantenna with
symmetric excitation

Figure 2.17: Phase of the current distribution on a L-shaped nanoantenna with
antisymmetric excitation
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In order to account for the finite conductivity of the metals, the boundary

condition given in Equation (2.16) should be modified as follows:

t̂ · [Escat + Einc] =
1− j
2πa

√
µ0ω

2σ
I (2.97)

where a is the antenna radius, µ0 is the permeability, ω is the radial frequency

of the incident field and σ is the AC conductivity of the metal. AC conductivity

of the metal can be calculated from the DC conductivity of the metal when the

frequency of interest is given and the electron relaxation lifetime of the metal is

known.

2.2.2.3 Radiation into Farfield

Finding the scattered fields of a metallic L-shaped nanoantenna using MoM is a

problem that consists of two parts. Obtaining the current distribution along the

antenna for a known incident field is the first part of this problem. For the second

part, this current distribution should be re-radiated in order to find the scattered

fields. In this subsection, solution to this part of the problem is provided.

The far-field radiation vector is defined as the three-dimensional spatial Fourier

transform of the current density [86] and is given by Equation (2.98).

F (k) =

∫
V

J(r′)ejk·r
′
d3r′ (2.98)

where J(r′) is the current density on the antenna.This quantity depends on the

wavenumber and the directional unit vector r̂ which is completely defined by the

spherical coordinate angles θ and φ. For a thin-linear antenna, current density

can be expressed as follows:

J(r) = I(l′) [x̂δ(y)δ(z)H(−l′) + ŷδ(x)δ(z)H(l′)] (2.99)

where δ(x), δ(y) and δ(z) are the dirac functions of variable x, y and z, respec-

tively while I(l′) is the current distribution. Wavevector k is expressed in the

spherical coordinate system as follows:

k = kr̂ = k(x̂ cosφsinθ + ŷ sinφsinθ + ẑ cos θ) (2.100)
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Then, k̄ · r̄′ = (2π
λ
r̂) · (l′l̂) = 2π l

′

λ
(r̂ · l̂) is given as follows:

k̄ · r̄′ = 2π
l′

λ
sin θ {H(−l′)cosφ+H(l′) sinφ} (2.101)

For an x directed antenna standing on top of a semiconductor dielectric inter-

face, θ electric field component is given by Equation (2.102) and φ electric field

component is given by Equation (2.103)( [87]). For a y directed antenna cosφ

terms should be replaced by sinφ terms and sinφ terms should be replaced by

− cosφ terms.

Eθ =

 (cos θ)2

cos θ +
√

(n2 − (sin θ)2)

 cosφ

−

(sin θ)2 cos θ
cos θ −

√
(n2 − (sin θ)2)

n2 cos θ +
√

(n2 − (sin θ)2)

 cosφ

(2.102)

Eφ = − cos θ

cos θ +
√

(n2 − (sin θ)2)
sinφ (2.103)

For designing metasurfaces using L-shaped metallic antennas, their far-field

amplitude and phase responses along the incident field’s wavevector direction

should be considered. Hence, θ and φ used in Equation (2.101), Equation (2.102)

and Equation (2.103) can be set to 0. Then, both of the electric field components

along the x̂ and ŷ directions reduce to 1
1+n

. Also, k̄ · r̄′ diminishes for θ equals 0.
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Figure 2.18: The scattered field amplitudes of L-shaped nanoantennas.

Far field amplitudes and phase shifts of L-shaped nanoantennas having varying

arm lengths are shown in Figure 2.18 and Figure 2.19. In order to obtain these

data, L-shaped nanoantennas are excited by electric field polarized along arm

2 and the scattered field along the normal direction to the antenna plane is

calculated. Only the cross-polarized (with respect to incident field) scattered

field is considered. Lengths of both antenna arms are varied between 0.1 and

0.6 effective wavelength so that it is possible to excite both resonance modes

for most of the antennas. Antennas are considered to be fabricated from gold

when considering the effect of finite conductivity of real metals. Scattered field

amplitudes of L-shaped nanoantennas maximized when both arm lengths have

length close to 0.5 effective wavelength. However, antennas having scattered

field amplitudes greater than 0.6 of the maximum scattering field amplitude can

also be used to design metasurfaces up to a certain performance. Scattered field

phase shifts of these antennas cover the whole 0−2π range as seen in Figure 2.19.

Therefore, L-shaped nanoantennas can be used to design metasurfaces.
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Figure 2.19: The scattered field phase shifts of L-shaped nanoantennas.

2.2.3 V-shaped Nanoantennas

In this subsection, amplitude and phase responses of V-shaped metallic antennas

are provided. For obtaining the mentioned data, the behavior of this antenna

is simulated using both FDTD and MoM methods. The results of the time

consuming FDTD simulations are used as references while a simplified model

is simulated with MoM method for obtaining fast results and scanning a large

parameter space. Similar to L shaped nanoantennas, V-shaped nanoantennas

have also phase shift responses that cover the whole 0-2π range thereby allowing

for a full modification of the wavefront of light.

2.2.3.1 Derivation of the Integral Equation
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Figure 2.20: Depiction of simplified geometry of V-shaped nanoantennas.

In the derivation of the integral equation governing the behavior of a V-shaped

nanoantenna, thin-wire approximation is used. According to this approximation,

antenna length and the excitation wavelength are much longer than the radius

of the antenna. The simplified geometry of the V-shaped nanoantenna using this

approximation and a reference coordinate system are depicted in Figure 2.20.

In this figure, lengths of the arms of V-shaped nanoantenna are equal and h

corresponds to the total length of these two equivalent arms. ∆ is the angle

between these two arms and will be referenced as the opening angle throughout

this chapter. a is the radius of the antenna while α is the angle between the

incident electric field and the symmetry axis of the antenna which is labeled as

ŝ. l′ is a spatial variable on the antenna where the source point is located while

l is another spatial variable where the observation point is located. Finally, A(r)

is the magnetic potential vector.

The total field, which is described in Section 2.2.1.1, is given by Equation (2.15)

for the V-shaped nanoantenna. For PEC antennas, the tangential component

of this total field should be zero on the antennas as given by Equation (2.16).
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Rearranging this equation, tangential component of the unknown scattered field

can be written in terms of the known incident field as given by Equation (2.17).

This scattered field depends on the vector magnetic potential and its dependence

for an antenna in a homogeneous medium is given by Equation (2.18).

Vector magnetic potentials are related to the induced current on the arms of

the antennas. In the limit of a thin antenna where the radius goes to zero, reduced

Kernel expression can be used. For this limit, vector magnetic potential is related

to the induced current as given in Equation (2.104) for a V-shaped nanoantenna.

Ā =
µo
4π

h
2∫

−h
2

t̂I(l′)dl′
e−jkR

V
r

RV
r

(2.104)

where t̂ is expressed as follows:

t̂ = [x̂ sin ∆− ŷ cos ∆]H(−l) + ŷH(l) (2.105)

where H(l) is the Heaviside function whose output is 1(0) when its input is pos-

itive(negative). Using Equation (2.17) and Equation (2.104) in Equation (2.18)

and rearranging some of the terms, the Pocklington type integral equation is ob-

tained for a V-shaped nanoantenna and given by Equation (2.106). However, this

equation does not have an analytical solution and a numerical solution must be

used to solve this equation for obtaining the induced current distribution on this

antenna.

− j4πwεoεr t̂ · Ēinc = t̂ ·

∇(∇ ·

h
2∫

−h
2

t̂I(l′)dl′
e−jkR

V
r

RV
r

) + k2

h
2∫

−h
2

t̂I(l′)dl′
e−jkR

V
r

RV
r


(2.106)

where RV
r is the reduced effective distance for the V-shaped nanoantenna. In

order to calculate the reduced effective distance, two different conditions should

be considered for the V-shaped nanoantenna:

1. when the observation and source points are on the same arm (l and l′ have

the same sign)

2. when the observation and source points are on the different arms (l and l′

have different signs)
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For Case 1, Equation (2.47) should be used for the V-shaped nanoantenna. For

Case 2, Equation (2.107) should be used for the V-shaped nanoantenna.

RV
r =

√
a2 + (l + l′cos∆)2 + (l′sin∆)2 (2.107)

For an antenna that has tangential unit vectors lying in only x̂ and ŷ directions,

gradient of divergence of the vector magnetic potential is given by Equation (2.49)

or Equation (2.50). For the V-shaped nanoantenna, the arm along x̂ direction

is labeled as Γ1 and the other arm is labeled as Γ2 meaning arm 1 and arm 2,

respectively. In order to find the vector magnetic potential affecting arm 1 of this

antenna, x̂ and ŷ directed components of the vector magnetic potential shall be

found. Only the current on arm 2 creates a vector magnetic potential that has

x̂ component and flow direction of this current is chosen to be the −x̂ direction

as depicted in Figure 2.20. The vector magnetic potential due to this current is

given as follows:

A1x =
µo
4π

∫ 0

−h
2

I(l′)
e−jkR

V
rd

RV
rd

dl′ sin(∆) (2.108)

where RV
rd is defined by Equation (2.109). x and y are the observation point

coordinates. l′ is the source point and ∆ is the opening angle of the antenna.

RV
rd =

√
a2 + (y + l′ cos(∆))2 + (x− l′ sin(∆))2 (2.109)

The derivative of the kernel e−jkRV
rd

RV
rd

with respect to x is given by Equation (2.53)

if RL
rd is replaced by RV

rd and it should be evaluated at x equals 0 since the

source point is on the antenna.
(
RV
rd

)′
is given by Equation (2.110) for V-shaped

nanoantenna.

∂RV
rd

∂x
=

1/2× 2(x− l′sin∆)√
(a2 + (y + l′cos∆)2 + (x− l′sin∆)2)

=
−l′ sin ∆

RV
rd

(2.110)

Using Equation (2.53) and Equation (2.110) in Equation (2.108), explicit expres-

sion for x component of the vector magnetic potential on arm 1 is obtained:

∂A1x

∂x
=
µo
4π

∫ 0

−h
2

I(l′)
e−jkR

V
rd

(RV
rd)

3 (1 + jkRV
rd)l

′dl′ sin(∆) (2.111)

where RV
rd is given by Equation (2.107) if y is replaced by l.
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For the V-shaped nanoantenna, both of the currents on arm 1 and 2 creates

vector magnetic potentials that have ŷ directed components. Flow direction of the

current on arm 1 is chosen to be plus ŷ direction. The vector magnetic potential

due to these currents on both arms is given as follows:

A1y =
µo
4π

(∫ h
2

0

I(l′)
e−jkR

V
rs

RV
rs

dl′ +

∫ 0

−h
2

I(l′)
e−jkR

V
rd

RV
rd

dl′(−cos∆)

)
(2.112)

where RV
rs is defined by Equation (2.57) if L is replaced by V . l′ is the source

point and its sign is positive as a result of the coordinate system choice. Note

that x is 0 on arm 1, hence source point is only represented by y.

In Figure 2.20, the orientation of the incident field is given with respect to the

antenna symmetry axis. α is defined as the incidence angle and taken counter

clockwise direction from the symmetry axis of the antenna. Incident field propa-

gation direction is assumed to be out of page(+z) direction. Boundary condition

for arm 1 of V-shaped nanoantenna with the assumption of antenna being a

perfect electric conductor is given as follows:

− Einc cos(
∆

2
+ α) =

1

jwµoεoεr

[(
∂2

∂y2
+ k2

)
A1y +

∂

∂y

(
∂A1x

∂x

)]
(2.113)

The constants in Equation (2.113) can be rearranged as given in Equation (2.59).

Then, the boundary condition for arm 1 can be written as follows:

2kEinc cos(
∆

2
+ α) =

jη

2π

[ ∂2
∂y2

+ k2
]

h
2∫

0

I(l′)
e−jkR

V
rs

RV
rs

dl′ +

0∫
−h

2

I(l′)
e−jkR

V
rd

RV
rd

dl′(−cos∆)


+

jη

2π

 ∂

∂y

0∫
−h

2

I(l′)
e−jkR

V
rd

(RV
rd)

3 (1 + jkRV
rd)l

′dl′(sin ∆)2


(2.114)
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Rearranging Equation (2.114) and replacing variable y with l, the following equa-

tion is obtained:

2kEinc cos(
∆

2
+ α) =

jη

2π

[ ∂2
∂l2

+ k2
]

h
2∫

−h
2

I(l′)κ1(l, l
′,∆)dl′


+

jη

2π

 ∂

∂l

h
2∫

−h
2

I(l′)κ2(l, l
′,∆)dl′


(2.115)

where κ1 is the integral kernel of the integration that will be differentiated twice

and given by Equation (2.116). κ2 is the integral kernel of the integration that

will be differentiated only once and given by Equation (2.117).

κ1(l, l
′,∆) =

e−jkR
v
rs

Rv
rs

H(l′) +
e−jkR

v
rd

Rv
rd

(−cos∆)H(−l′) (2.116)

where H symbolizes the Heaviside function whose output is 1 when its input is

positive. RV
rs is given by Equation (2.47).

κ2(l, l
′,∆) =

e−jkR
v
rd

(Rv
rd)

3 (1 + jkRv
rd)l

′(sin∆)2H(−l′) (2.117)

where RV
rd is given by Equation (2.107).

For arm 2, reference coordinate system is rotated for relatively easier derivation

of the vector magnetic potentials as depicted in Figure 2.21. For this arm the only

source of vector magnetic potential that has x component is the current on arm 1.

The vector magnetic potential due to this current is given by Equation (2.118).
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Figure 2.21: Depiction of the simplified geometry of V-shaped nanoantennas for
arm 2.

Ax =
µo
4π

∫ h
2

0

I(l′)
e−jkR

V
rd

RV
rd

dl′(sin∆) (2.118)

where RV
rd is defined by the following equation. x and y are the observation

point coordinates. l′ is the source point and its sign is positive as a result of the

coordinate system choice. ∆ is the opening angle of the antenna.

RV
rd =

√
a2 + (y + l′ cos ∆)2 + (x− l′ sin ∆)2 (2.119)

The derivative of the integral kernel of Equation (2.118) with respect to x is given

by the following equation and it should be evaluated for x being equal to 0.

∂

∂x

e−jkR
V
rd

RV
rd

=

(
−jke

−jkRV
rd

RV
rd

− e−jkR
V
rd

(RV
rd)

2

)
(Rv

rd)
′ (2.120)

The derivative of the effective distance is calculated for the case of x being equal
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to 0 and the result is given by the following equation:

∂RV
rd

∂x
=

x− l′ sin ∆√
a2 + (x− l′ sin ∆)2 + (y + l′ cos ∆)2

= − l
′ sin ∆

RV
rd

(2.121)

Using Equation (2.120) and Equation (2.121) in Equation (2.118), the derivative

of the x component of the vector magnetic potential with respect to variable

x can be obtained as given in Equation (2.122). Effective distance is given by

Equation (2.123) for the case of x being equal to 0.

∂A2x

∂x
=
µo
4π

∫ h
2

0

I(l′)
e−jkR

V
rd

(RV
rd)

3 (1 + jkRV
rd)l

′dl′sin2∆ (2.122)

RV
rd =

√
a2 + (y + l′cos∆)2 + (l′ sin ∆)2 (2.123)

Both the current on arm 1 and 2 creates vector magnetic potentials that have

y components. The vector magnetic potential due to these currents is given by

the following equation:

A2y =
µo
4π

∫ 0

−h
2

I(l′)
e−jkR

V
rs

RV
rs

dl′ +
µo
4π

∫ h
2

0

I(l′)
e−jkR

V
rd

RV
rd

dl′(−cos∆) (2.124)

where RV
rs is defined by the following equation while RV

rd is defined by Equa-

tion (2.123). l′ is the source point. Note that x is 0 on arm 2, hence source point

is only represented by y.

RV
rs =

√
a2 + (y − l′)2 (2.125)

Boundary condition for arm 2 with the assumption of antenna being a perfect

electric conductor is given by the following equation:

Einc cos(
∆

2
− α) =

1

jwµoεoεr

[(
∂2

∂y2
+ k2

)
A2y +

∂

∂y

(
∂A2x

∂x

)]
(2.126)

The constants in Equation (2.126) can be re-arranged as follows.

1

jwµoεoεr

µo
4π

= − 1

2k

jη

2π
(2.127)

where η is the effective intrinsic impedance of the homogeneous medium where

the antenna stands. Then, the boundary condition for arm 2 can be written as
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follows:

− 2kEinc cos(
∆

2
− α) =

jη

2π

[ ∂2
∂y2

+ k2
] 0∫
−h

2

I(l′)
e−jkR

V
rs

RV
rs

dl′ −

h
2∫

0

I(l′)
e−jkR

V
rd

RV
rd

dl′ cos ∆


+

jη

2π

 ∂

∂y

h
2∫

0

I(l′)
e−jkR

V
rd

(RV
rd)

3 (1 + jkRV
rd)l

′dl′sin2∆


(2.128)

Rearranging Equation (2.128) and replacing variable y with l, the following equa-

tion is obtained:

− 2kEinc cos(
∆

2
− α) =

jη

2π

[ ∂2
∂l2

+ k2
] h

2∫
−h

2

I(l′)κ3(l, l
′,∆)dl′

+

jη

2π

 ∂

∂l

h
2∫

−h
2

I(l′)κ4(l, l
′,∆)dl′


(2.129)

where κ3 is the integral kernel of the integration that will be differentiated twice

and given by Equation (2.130). κ4 is the integral kernel of the integration that

will be differentiated only once and given by Equation (2.131).

κ3(l, l
′,∆) =

e−jkR
v
rs

Rv
rs

H(−l′)− e−jkR
v
rd

Rv
rd

H(l′)cos∆ (2.130)

where H symbolizes the Heaviside function whose output is 1 when its input is

positive. RV
rs is given by Equation (2.47).

κ4(l, l
′,∆) =

e−jkR
v
rd

(Rv
rd)

3 (1 + jkRv
rd)l

′(sin∆)2H(l′) (2.131)

where RV
rd is given by Equation (2.107).
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Combining the boundary conditions for both arms of the V-shaped nanoan-

tenna, one can obtain the following equation:

2kEinc

[
cos(

∆

2
+ α)H(l)− cos(

∆

2
− α)H(−l)

]
=

jη

2π

[ ∂2
∂l2

+ k2
] h

2∫
−h

2

I(l′)κ1(l, l
′)dl′

+

jη

2π

 ∂

∂l

h
2∫

−h
2

I(l′)κ2(l, l
′)dl′


(2.132)

Where κ1 and κ2 are given by Equation (2.133) and Equation (2.134).

κ1(l, l
′,∆) =

e−jkR
V
rs

RV
rs

[H(l)H(l′) +H(−l)H(−l′)]−

e−jkR
V
rd

RV
rd

[H(l)H(−l′) +H(−l)H(l′)] cos ∆

(2.133)

where RV
rs is given by Equation (2.47).

κ2(l, l
′,∆) = (1 + jkRV

rd)
e−jkR

V
rd

(RV
rd)

3 l
′sin2∆ [H(l)H(−l′) +H(−l)H(l′)] (2.134)

where RV
rd is given by Equation (2.107).

2.2.3.2 MoM Numerical Solution

The Pocklington type integral equation Equation (2.132) does not have an an-

alytical solution, hence numerical solutions must be implemented to solve this

equation. In this subsection, MoM is applied for solving this equation.
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Figure 2.22: Current discretization on a V-shaped nanoantenna.

The antenna is discretized into N (2 × M) parts such that the curvilinear

variable l′ is sampled at points {−M,−M+1, ...,−1, 1, ...,M−1,M}. Figure 2.22

contains a schematic representing the discretization of the antenna. D is the

sampling period which is given by the following simple relation:

D =
h

N − 1
(2.135)

After discretization the integration parts of the Equation (2.132) are represented

by discrete functions V 1[ln] and V 2[ln] which are given as follows:

V (i)[ln] =
jη

2π


h
2∫

−h
2

I(l′)κ(i)(ln, l
′,∆)dl′

 (2.136)

The current distribution on the antenna is expanded into a sum of weighted Dirac

functions:

I(l′) =
M∑

m=−M

Imδ(l
′ − lm) (2.137)

When this weighted distribution is used in Equation (2.136), the following relation

is obtained:

Vn
(i) =

M∑
m=−M

κ(i)nmIm (2.138)
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κ
(1)
nm and κ

(2)
nm are given by the following equations:

κ(1)nm =
jη

2π

e−jkR
V
rs

RV
rs

[H(ln)H(lm) +H(−ln)H(−lm)]−

jη

2π

e−jkR
V
rd

RV
rd

cos ∆ [H(ln)H(−lm) +H(−ln)H(lm)]

(2.139)

κ(2)nm =
jη

2π
(1 + jkRV

rd)
e−jkR

V
rd

(RV
rd)

3 lmsin2∆ [H(−ln)H(lm) +H(ln)H(−lm)] (2.140)

First and second order derivatives of V (i)[ln] are given by Equation (2.141) and

Equation (2.142) where finite difference schemes are used to convert derivatives

in the integral equation into sums.

∂2

∂l2
V 1(l) =

V 1
n+1 − 2V 1

n + V 1
n−1

D2
(2.141)

∂

∂l
V 2(l) =

V 2
n+1 − V 2

n−1

2D
(2.142)

Equation (2.132) can be rewritten after discretization by using Equation (2.141)

and Equation (2.142) after rearranging some of the constants such as d = 2k and

α = 1− k2D2

2
:

1

D2

(
V 1
n+1 − 2αV 1

n + V 1
n−1
)

+
1

2D
(V 2

n+1 − V 2
n−1) = dEn (2.143)

where En is the discretized (normalized) incident field projection on the antenna

and given by the following equation:

En = cos(
∆

2
+ α)H(ln)− cos(

∆

2
− α)H(−ln) (2.144)

Now, the discrete form of the Pocklington type integral equation can be written

as follows: [
Aκ(1) + Cκ(2)

]
I = QdE (2.145)

where A is given by Equation (2.146), C is given by Equation (2.147) and Q is

given by Equation (2.148).

A =
1

D2



0 0 0 0 0 . . . 0

1 −2α 1 0 0 . . . 0

0 1 −2α 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 −2α 1 0

0 . . . 0 0 1 −2α 1

0 . . . 0 0 0 0 0


(2.146)

53



C =
1

2D



0 0 0 0 0 . . . 0

−1 0 1 0 0 . . . 0

0 −1 0 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 −1 0 1 0

0 . . . 0 0 −1 0 1

0 . . . 0 0 0 0 0


(2.147)

Q =



0 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 0 1 0 0

0 . . . 0 0 0 1 0

0 . . . 0 0 0 0 0


(2.148)

All of the matrices used in Equation (2.91) are N ×N square matrices. First and

last rows of these matrices are purposefully added as zero vectors for making these

matrices square. However, both of these rows and first and last columns of these

matrices can be removed since the first and last elements of the current vector

(I) must be 0. This situation is a consequence of the end conditions which state

that the current distribution must vanish at the physical ends of the antenna.

After removing these rows and columns, current distribution on the V-shaped

nanoantenna can be find using Equation (2.149) where I is the reduced current

distribution and zeros must be added as the first and last elements. Z is given

by Equation (2.150)

I = dZ−1E (2.149)

Z = AκQ (2.150)
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Figure 2.23: Amplitudes of current distributions on V-shaped nanoantennas with
symmetric excitation.

Figure 2.24: Amplitudes of current distributions on V-shaped nanoantennas with
antisymmetric excitation.
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For finding the current distribution on a V-shaped nanoantenna using MoM,

we first find the projection of the incident field on the V-shaped nanoantenna.

Then, we calculate the coefficients such as α and D. Using these coefficients

matrix A and C are calculated. Then, the impedance matrix Z1 and Z2 are

calculated using the reduced kernels Rrd and Rrs and multiplied by A and C,

respectively. Finally, the inverse of the summation of the multiplication of A and

Z1 and the multiplication of C and Z2 is multiplied by the vector corresponding

to the projection of the incident field on the V-shaped nanoantenna for obtaining

the current distribution.

In Figure 2.23 amplitudes of the current distributions on V-shaped nanoan-

tennas of varying length and fixed opening angle of π
4

are provided for the case

of symmetric excitation. In the symmetric excitation, the polarization of the

incident field has the same direction of the antenna symmetry axis. For this

excitation, both arms of the antennas act as rod antennas of length h
2

and their

resonance condition occur proportional to this length.

In Figure 2.24 amplitudes of the current distributions on V-shaped nanoan-

tennas of varying length and fixed opening angle of 3π
4

are provided for the case

of antisymmetric excitation. In the antisymmetric excitation, the polarization

of the incident field has a direction that is orthogonal to the antenna symmetry

axis. For this excitation, the antennas act similar to rod antennas of length h and

their resonance condition occur proportional to this length. The antenna lengths

are varied from 0.25 to 3.0 wavelength in obtaining the data in these figures

with MoM simulations. The phase of the current distributions are also provided

in Figure 2.25 and Figure 2.26 for the cases of symmetric and antisymmetric

excitations.
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Figure 2.25: Phase of current distribution on a V-shaped nanoantenna with sym-
metric excitation.

Figure 2.26: Phase of current distribution on a V-shaped nanoantenna with an-
tisymmetric excitation.
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In order to account for the finite conductivity of the metals, the boundary

condition given in Equation (2.16) should be modified as follows:

t̂ · [Escat + Einc] =
1− j
2πa

√
µ0ω

2σ
I (2.151)

where a is the antenna radius, µ0 is the permeability, ω is the radial frequency

of the incident field and σ is the AC conductivity of the metal. AC conductivity

of the metal can be calculated from the DC conductivity of the metal when the

frequency of interest is given and the electron relaxation lifetime of the metal is

known.

2.2.3.3 Radiation into Farfield

ŷ

x̂

Einc

I(l’)

I(l’)

Figure 2.27: Source of scattering depiction on a V-shaped nanoantenna.

Finding the scattered fields of a metallic V-shaped nanoantenna using MoM is

a problem that consists of two parts. Obtaining the current distribution along the

antenna for a known incident field is the first part of this problem. For the second

part, this current distribution should be re-radiated in order to find the scattered

fields. In this subsection, solution to this part of the problem is provided.

The far-field radiation vector is defined as the three-dimensional spatial Fourier
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transform of the current density [86] and is given by Equation (2.152).

F (k) =

∫
V

J(r′)ejk·r
′
d3r′ (2.152)

where J(r′) is the current density on the antenna. This quantity depends on the

wavenumber and the directional unit vector r̂ which is completely defined by the

spherical coordinate angles θ and φ. For a thin-linear antenna, current density

can be expressed as follows:

J(r) = I(l′)H(l′)

[
x̂ cos(

∆

2
)δ(y)δ(z) + ŷ sin(

∆

2
)δ(x)δ(z)

]
+

I(l′)H(−l′)
[
x̂(− cos(

∆

2
))δ(y)δ(z) + ŷ sin(

∆

2
)δ(x)δ(z)

] (2.153)

where δ(x), δ(y) and δ(z) are the dirac functions of variable x, y and z, respec-

tively while I(l′) is the current distribution. Wavevector k is expressed in the

spherical coordinate system as follows:

k = kr̂ = k(x̂ cosφsinθ + ŷ sinφsinθ + ẑ cos θ) (2.154)

Then, k̄ · r̄′ = (2π
λ
r̂) · (l′l̂) = 2π l

′

λ
(r̂ · l̂) is given as follows:

k̄ · r̄′ = 2π
l′

λ
sin θ

{
H(−l′)(−cos(∆

2
+ φ)) +H(l′) cos(

∆

2
− φ)

}
(2.155)

For an x directed antenna standing on top of a semiconductor dielectric inter-

face, θ electric field component is given by Equation (2.156) and φ electric field

component is given by Equation (2.157)( [87]). For a y directed antenna cosφ

terms should be replaced by sinφ terms and sinφ terms should be replaced by

− cosφ terms.

Eθ =

 (cos θ)2

cos θ +
√

(n2 − (sin θ)2)

 cosφ

−

(sin θ)2 cos θ
cos θ −

√
(n2 − (sin θ)2)

n2 cos θ +
√

(n2 − (sin θ)2)

 cosφ

(2.156)

Eφ = − cos θ

cos θ +
√

(n2 − (sin θ)2)
sinφ (2.157)
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For designing metasurfaces using V-shaped metallic antennas, their far-field

amplitude and phase responses along the incident field’s wavevector direction

should be considered. Hence, θ and φ used in Equation (2.155), Equation (2.156)

and Equation (2.157) can be set to 0. Then, both of the electric field components

along the x̂ and ŷ directions reduce to 1
1+n

. Also, k̄ · r̄′ diminishes for θ equals 0.

Figure 2.28: Scattered field amplitudes of V-shaped nanoantennas.

Far field amplitudes and phase shifts of V-shaped nanoantennas having varying

lengths and opening angles are shown in Figure 2.28 and Figure 2.29, respectively.

In order to obtain these data, V-shaped nanoantennas are excited by electric field

polarized at a 45◦ angle with respect to antenna symmetry axis and the scattered

field along the normal direction to the antenna plane is calculated. Only the cross-

polarized (with respect to incident field) scattered field is considered. Lengths of

antennas are varied between 0.2 and 1.1 effective wavelength so that it is possible

to excite both resonance modes for most of the antennas. Antennas are considered

to be fabricated from gold when considering the effect of finite conductivity of real

metals. Scattered field amplitudes of V-shaped nanoantennas maximized when

both arm lengths have length close to 0.5 effective wavelength. However, antennas

having scattered field amplitudes greater than 0.6 of the maximum scattering field
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amplitude can also be used to design metasurfaces up to a certain performance.

Scattered field phase shifts of these antennas cover the whole 0 − 2π range as

seen in Figure 2.29. Therefore, V-shaped nanoantennas can be used to design

metasurfaces.

Figure 2.29: Scattered field phase shifts of V-shaped nanoantennas.

2.2.3.4 FDTD Numerical Solution

For understanding the general behavior of V-shaped nanoantennas, probing a

large parameter space in a relatively shorter amount of time and obtaining rough

results, a simplified model can be simulated with MoM as done in the previous

subsections. However, after the rough scanning stage, precise behavior of anten-

nas is required for designing metasurfaces with optimum performance. For this

part of the problem, full wave simulations can be used with a much more realistic

model having 3D geometry.

In this part, Lumerical FDTD is used to perform full wave simulations of

gold V-shaped nanoantennas that are placed onto a silicon substrate. Before
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determining the initial value for varying the length and cross-section of the V-

shaped nanoantennas, effective wavelength for this media should be considered.

Effective wavelength is given by Equation (2.14) for the visible and infrared region

of the electromagnetic spectrum. For excitation wavelength of 1550 nm and radii

of 20 nm, 50 nm and 100 nm, effective wavelength varies between 800 nm and

1200 nm for rod antennas standing in vacuum [88]. Therefore, total length of

a V-shaped nanoantenna can be close to 800 nm if it is standing in vacuum.

However, since the V-shaped nanoantennas are placed on a silicon substrate,

effective refractive index is close to 2.6 [52]. So, total length close to 300 can be

considered for the resonance condition.

x

y

^

^

Si

Au

w

h

L

1

2

3

Figure 2.30: Geometry of V-shaped nanoantennas modeled for Lumerical FDTD
simulations.

For modeling a realistic V-shaped nanoantenna geometry, two rectangular

prisms of gold (gold colored blocks 1 and 2) that have arm lengths h and width

w are connected by a triangular prism of gold (gold colored block 3) as depicted

in Figure 2.30. Guided by our MoM analysis results obtained in the previous

subsections, total length of V-shaped nanoantennas is varied between 100 nm

and 400 nm while the opening angle is changed between 30◦ and 180◦. The width

w and thickness d is held fixed at 50 nm. For each V-shaped nanoantenna, a

silicon substrate having square cross-section of edge length L is used. This edge

length L should be long enough for avoiding mutual coupling of antennas when

antennas placed nearby to built metasurfaces and it should also be as short as
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possible for increasing the efficiency of designed metasurface. After several simu-

lation runs, we obtained the value of 300 nm to be used as the edge length. Then,

this V-shaped nanoantenna on a silicon substrate is excited by a monochromatic

(1550 nm) total field scattered field (TFSF) source at 1550 nm from the silicon

substrate. This TFSF source is a special kind of plane wave source of Lumerical

FDTD that is used for scattering simulations and it simplifies the splitting pro-

cess of the incident and scattered fields by just keeping the incident field inside its

boundaries. A frequency domain monitor is placed just above this TFSF source

boundary for recording the near scattered fields. Then, far field transformation

functions are used to calculate the farfield amplitude and phase responses of these

antennas along the desired directions. The polarization direction of the TFSF

source is chosen to be +45◦ with respect to x axis shown in the Figure 2.30 so

that it is possible to excite different resonance modes (ones that are parallel to the

symmetry axis of the antenna and ones that are perpendicular to this symmetry

axis). The recorded and far-field transformed scattered field has perpendicular

polarization direction to this incident field.

Table 2.1: Length and opening angle of modeled V-shaped nanoantennas

Antenna Type Arm Length (nm) Opening Angle (◦) Axis Orien. (◦)
1 180 79 -45
2 140 68 -45
3 130 104 -45
4 85 175 -45
5 180 79 45
6 140 68 45
7 130 104 45
8 85 175 45

In Table 2.1, length and opening angles of modeled V-shaped nanoantennas

are given. Since, our aim is to find a set of V-shaped nanoantennas that cover

full 0 − 2π range by their phase shift responses, we can first find a group of

antennas that cover 0 − π range and then rotate this group by 90◦. Therefore,

last four of the antennas in Table 2.1 are just 90◦ rotated replicas of the first

four antennas. The phase shift and scattering amplitudes of these antennas are

provided in Table 2.2.

63



Table 2.2: Far-field responses of modeled V-shaped nanoantennas

Antenna Type Phase Shift (◦) Scat. Ampl. (a.u.)
1 2 0.92
2 55 0.85
3 98 0.73
4 140 1.00
5 182 0.92
6 235 0.85
7 278 0.73
8 320 1.00

2.3 Dielectric Nanoantennas

Pioneering studies on metasurfaces focused on metallic nanoantennas [9, 13, 14,

17, 21, 25, 27, 46, 52] for designing metasurfaces. However, absorption losses of

metals and cross-polarization scheme required by metallic nanoantennas such as

V-shaped nanoantennas cause efficiency problems in metallic metasurfaces that

are designed to be used in transmittance mode as mentioned in Section 2.2.

Because of this phenomena, practical usage of metallic metasurfaces is limited to

reflectance mode optical components.

Dielectric nanoantennas emerged as alternatives to metallic nanoantennas for

designing and realizing metasurfaces. Besides the primary advantage of lack of

absorption losses, ease of integration with electronics and the possibility of man-

ufacturing by proven semiconductor fabrication technologies favor the dielectric

metasurfaces over metallic counterparts when manufacturing requirements are

considered. Furthermore, it has been recently shown that high efficiency trans-

mission mode optical components such as ultra-thin gratings, lenses and axicons

can be realized by patterning sub-wavelength thick dielectric materials such as

silicon [18].

2.3.1 FDTD Numerical Solution

Dielectric nanoantennas made from high (¿2.0) refractive index material can show

strong Mie-type scattering resonances similar to metallic nanoantennas [89, 90].
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For example, silicon nanowires show this type of resonance when their circum-

ference is an integral number of times the incident light’s wavelength inside sili-

con [91]. This resonance condition is given by the following equation:

m
λ0
n
≈ 2πr (2.158)

where m is a positive integer, λ0 is the wavelength of incident light in free space

and r is the radius of silicon nanowire. In addition to the electric dipole resonance

inside high-refractive index dielectric materials, there can also exist a magnetic

dipole resonance depending on the orientation and localization of the electric

field [92,93]. These two resonances can be used to satisfy the 0-to-2π phase shift

coverage requirement similar to the utilization of orthogonal modes occurring

in V and L-shaped metallic nanoantennas. Besides the phase coverage issue,

the primary interest in dielectric nanoantennas is the opportunity of increasing

device efficiency. In order to provide this, both of the resonance modes should be

excited with similar amplitudes and phases so that their far field contributions

can interfere constructively in the forward direction. This condition was predicted

theoretically for spherical particles in first Kerker’s condition [94]. Recently,

almost zero back scattering was experimentally demonstrated using this type of

dielectric nanoparticles by spectrally overlapping electric and magnetic dipole

resonances [95, 96]. For silicon nanodisks (which has a diameter that is larger

than its height), this zero backscattering condition is satisfied for a diameter to

height ration of 2 [66, 67]. For example, for a design wavelength of 3.6 µm, the

diameter of the nanodisk can be around 1300 nm while its height should be close

to 600 nm.

For designing silicon nanodisks that can perform as dielectric nanoantennas

used to build metasurfaces, a design wavelength of 3.6 µm was selected. Then,

using the refractive index of silicon at this wavelength in Equation (2.158), a

starting point for nanodisk diameter is determined as 1300 nm. After this, the

nanodisk height was chosen as 600 nm. As the substrate, silica was chosen due

to its high transmission in the wavelength of interest and its compatibility with

silicon. For modeling this geometry Lumerical FDTD was used.
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2.3.2 Radiation into Farfield

For finding a suitable dielectric nanoantenna set from the proposed design of sil-

icon nanodisks on silica, its farfield scattering amplitudes and phases should be

analyzed. Moreover, its transmission efficiency should be obtained for assessing

its contribution to device efficiency. In order to obtain these characteristics of

silicon nanodisks, full wave simulations were performed using Lumerical FDTD.

A simulation region that spanned a volume of L nm x L nm x 5000 nm with a ho-

mogeneous refractive index that matches the silica’s refractive index in the light

source’s wavelength was used. L is the size of the axial lengths of the simulation

region and chosen as a design parameter in order to maximize transmission with-

out introducing mutual coupling between silicon nanodisks. A monochromatic

plane wave source that has wavelength varied between 3.0 µm and 5.0 µm from

simulation to simulation was used to excite the silicon nanodisk from a point that

is close to the bottom of the simulation region. A nearfield monitor was used to

record the scattered and transmitted field from the silicon nanodisk and placed

at a point close to the top of the simulation region. The diameter of the silicon

nanodisk was varied between 500 nm to 2000 nm while its diameter was varied

between 250 nm to 1000 nm. Also, L was varied between 1200 nm to 2400 nm.

After probing this parameter space, a suitable dielectric nanoantenna set was

obtained for the design wavelength of 3.2µm and for L being equal to 1800 nm.

Far field amplitude and phase shift responses of the silicon nanodisks are given

as a function of the nanodisk diameter for the fixed designed height of 550 nm

in Figure 2.31. In the inset of this figure, depiction of the silicon nanodisk’s

geometry is provided. As seen in this figure, 0 − to − 2π phase shift coverage is

satisfied with an almost uniform amplitude response. So, these antennas can also

be used as building blocks of metasurfaces.
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Figure 2.31: Amplitude and phase responses of far-field scattered from Si nan-
odisks.

For obtaining the transmission efficiency of silicon nanodisks, a similar simu-

lation scenario was used. The only difference was the replacement of near field

monitor by a power transmission monitor. For comparing the transmission effi-

ciency to that of the metallic nanoantennas, gold V-shaped nanoantennas were

also modeled and full wave simulations were also performed for them. Maximum

efficiency that was obtained by using gold V-shaped nanoantennas was less than

11%. The far field characteristics’ and transmission efficiencies of a set of silicon

nanodisks that can be used to realize transmission mode dielectric metasurfaces is

provided in Table 2.3. As seen in this table, the transmission efficiencies of silicon

nanodisks is far more better than that of the V-shaped gold antennas. It can even

reach very close to zero backscattering when the first Kerker condition is satis-

fied. The main reason for this very efficient transmission is the lack of absorption

losses occurring in metallic nanoantennas. Therefore, these silicon nanodisks can

be used to replace metallic counterparts for realizing high efficiency transmission

mode metasurfaces that can perform as optical components.
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Table 2.3: Farfield characteristics and transmission efficiency of silicon nanodisks

Diameter (nm) Phase shift (◦) Amplitude (a.u.) Transmission (%)
1240 35 0.94 96
1200 347 0.87 83
1160 295 0.77 65
1130 256 0.77 65
1090 214 0.82 75
1020 167 1.00 98
900 125 0.92 90
1320 79 0.82 75
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Chapter 3

Metasurface Design Methodology

Metasurfaces consist of dense two-dimensional arrangements of optically thin res-

onators. By changing the size, shape and orientation of optically thin resonators,

their amplitude and phase shift responses can be tuned. This controllability paves

the way of achieving desired optical functionalities by designing the arrangement

of these resonators.

This chapter consist of two sections. In Section 1, general procedure for de-

signing metasurfaces is explained in detail. Then, using this procedure, several

metasurface designs including lenslet arrays and parabolic mirrors are provided

in Section 2.

3.1 General Procedure

The procedure for designing a metasurface is depicted in Figure 3.1. A good

starting point is the determination of the central design wavelength. After fixing

this parameter, size range of the optical resonators can be roughly determined

depending on the resonance condition. Operational bandwidth of the metasurface

can be used as an input at this step. For example, midpoint of this bandwidth

can be picked as the central design wavelength.
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Design a metasurface

Determine the central 
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Select optical resonator set

Determine metasurface 
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Regions of constant 
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Operational 
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Figure 3.1: Depiction of the metasurface design methodology.
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Figure 3.2: Procedure for selecting the resonator set.
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Second and most time consuming step of designing a metasurface is the deter-

mination of the optical resonator set. A set of optical resonators shall be designed

for covering the full 0−2π range while keeping the amplitude response as uniform

as possible. In Chapter 2, a large parameter space is probed using method of mo-

ments and it is shown that V and L shaped metallic nanoantennas can satisfy the

phase coverage property. A V-shaped nanoantenna model is given in Figure 2.30.

The unit cell of this model is a square of edge length L and special care must

be given to this parameter since it should be long enough for avoiding mutual

coupling of antennas when antennas placed nearby to built metasurfaces. The

arm length and opening angle of a V-shaped nanoantenna is changed for tuning

the phase shift response and by playing with these parameters, a set of V-shaped

nanoantennas can be selected to fulfill phase coverage property with a moderate

amplitude uniformity. An exemplary set is provided in Table 2.2. Generalized

selection procedure for optical resonators is given in Figure 3.2. After selecting

the building blocks, metasurface parameters such as size and functionality shall

be determined. For a lens or a lenslet array, these parameters can be aperture

size and focal length. Then using these parameters, phase shift response function

of the metasurface can be extracted. Phase response that should be imparted on

an incident light beam by a cylindrical lens is given by Equation (3.1).

θ(r) =
2π

λ
(
√
r2 + f 2 − f) (3.1)

where r is the distance to the lens center and f is the focal length while λ is

the free space wavelength. This phase response is plotted for two lenslets of

different f-numbers and same (50µm) aperture size in (a) and (b) of Figure 3.3.

However, these continuous phase responses cannot be realized by discontinuous

arrangement of optical resonators. Therefore, these phase responses must be

discretized into constant phase regions. If a set of n antennas is selected, then

the full phase shift response 2π is divided into n constant phase regions. For a

set of 8 antenna, the discretized phase responses imparted by exemplary lenslet

metasurfaces are given in (c) and (d) of Figure 3.3.
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Figure 3.3: Exemplary continuous and discretized phase shift responses of the
metasurfaces.

Final step of the metasurface design procedure is placing the resonators with

appropriate phase shift response to desired location for realizing the discretized

phase response of the metasurface. For a set of 8 antennas, arrangement of V-

shaped nanoantennas is shown in Figure 3.4. In this figure, constant phase shift

regions are represented with shadings of different densities.
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Figure 3.4: Realization of the phase shift response by placing nanoantennas.
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3.2 Example Designs

3.2.1 Metasurface Lens Design

In this subsection, several lenslets and lenslet arrays are designed using the meta-

surface design methodology described in Section 3.1. As the central design wave-

length, 1550 nm is selected. A set of 8 symmetric V-shaped nanoantennas is

selected as the optical resonator set that fulfills the 0 − 2π phase shift coverage

issue. The properties of this antenna set is given in Table 2.1 and Table 2.2. The

design parameters of the lenslet arrays are given in Table 3.1.

The phase shift responses of the lenslets in the lenslet arrays are given in

Figure 3.5. In this figure, only the phase response of one lenslet is shown for

each lenslet array. Continuous curves correspond to ideal phase responses while

dotted-dashed curves correspond to discretized versions of ideal phase responses.

For realization of the discretized phase shift response, the symmetric V-shaped

nanoantennas in the antenna set are placed one by one on phase shift response

defined locations of a silicon substrate. Since, the discretized phase shift responses

have constant phase shift regions, these regions are populated by same antennas

having same phase shift response. The distribution of antennas in these regions

are provided in Table 3.2.

Table 3.1: Metasurface lenslet array design parameters

Lenslet Type No of Lenslets Focal Len. (µm) Aperture Dia. (µm)
1 2 200 49.95
2 4 100 24.95
3 6 100 24.95
4 6 100 35.35
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Figure 3.5: Continuous and discretized phase shift responses of the lenslets.

For modeling the lenslet arrays in Lumerical FDTD, symmetric V-shaped

nanoantenna’s described in Section 2.2.3 are placed inside a 300 nm by 300 nm

unit cell. Then, the center of this unit cell is placed to the origin of the simula-

tion region and shifted to the discretized phase response specified location of a

silicon substrate. Each constant phase region specified in Table 3.2 are scanned

by these unit cells. By this way, a lenslet is modeled and by repeating this lenslet

along the desired directions a lenslet array is modeled. Since the FDTD simu-

lations are very time consuming, we modeled these lenslet arrays as cylindrical

lenslet arrays instead of spherical ones so that periodic boundary conditions can

Table 3.2: Antenna distributions in constant phase regions of lenslets

Lenslet 1 Lenslet 2 Lenslet 3 Lenslet 4

Reg No No of Ant Reg No No of Ant Reg No No of Ant Reg No No of Ant
0 59 0 41 0 41 0 41

1,-1 12 1,-1 9 1,-1 9 1,-1 9
2,-2 9 2,-2 6 2,-2 6 2,-2 6
3,-3 8 3,-3 6 3,-3 6 3,-3 6
4,-4 7 4,-4 - 4,-4 - 4,-4 5
5,-5 6 5,-5 - 5,-5 - 5,-5 4
6,-6 6 6,-6 - 6,-6 - 6,-6 5
7,-7 6 7,-7 - 7,-7 - 7,-7 3
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be used to decrease computation time. After modeling the cylindrical lenslet ar-

ray, a monochromatic (1550 nm) plane wave source is injected from the silicon

substrate. The polarization of the incident field is along the +x̂ direction of the

simulation region where the antennas are located on a silicon substrate that lied

on the x− y plane. The antennas are oriented in such a way that their symme-

try axis and the polarization direction of the incident field has an angle of 45◦.

This orientation angle makes sure that both of the orthogonal resonance modes

in the antennas are excited. Then the scattered field is recorded on a near field

monitor that is located above the lenslet array structure. Finally, this recorded

field data is transformed into far-field for cross-polarized (with respect to incident

field) field. This far-field data is sampled along the normal direction (+ẑ) of the

lenslet array surface and focusing behavior is observed. This focusing behavior of

lenslets in the arrays can be seen in Figure 3.6 as the beam-width of the scattered

field narrows at the metasurface dictated focal plane.

Figure 3.6: Cross-polarized far-field distributions of the lenslet arrays.
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3.2.2 Metasurface Parabolic Mirror Design

In this subsection, parabolic mirrors are designed using the metasurface design

methodology described in Section 3.1. As the central design wavelength, 850 nm

is selected. In the previous subsection, a set of 8 symmetric V-shaped nanoanten-

nas are used to build transmitting metasurfaces since the lenslets are transmitting

optical components. However, mirrors are reflective optical components and re-

flective metasurfaces should be designed to function as mirrors.

The optical resonator model used for building metasurface mirrors is depicted

in Figure 3.7. In this model, a gold plate is used for reflecting the incoming field

and a gold rectangular prism is placed on top of a magnesium fluoride spacer

which is also placed above the gold plate. By tuning the size of this gold rectan-

gular prism, phase of the reflected beam can be controlled with an almost constant

amplitude response. The width, length and thickness of the gold plate is fixed

and set to L1 = 120nm, L2 = 300nm and d3 = 130nm, respectively. Similarly,

the width, length and thickness of the magnesium fluoride spacer is also fixed

and set to L1 = 120nm, L2 = 300nm and d2 = 50nm, respectively. The width

and thickness of the gold plate is also fixed at w = 90nm and d3 = 30nm, respec-

tively but its length L is varied to control the phase shift response at its location.

An optical resonator set of 8 reflective metasurface unit cells is obtained after

performing FDTD simulations by modeling these unit cells having only L varied.

Simulation region and meshing properties are similar to the FDTD simulations

of the V-shaped nanoantennas, however, Lumerical FDTD lacked the refractive

index data for magnesium flouride. This data is calculated using the temperature

dependent Sellmeier coefficients [97]. Since this structure is a reflective structure,

a near field monitor is placed below the structure and source to record the re-

flected field. Then this recorded reflected near field data is transformed with far

field transformation functions to obtain the far field phase shift and amplitude

responses. The phase shift responses and lengths of this optical resonator set is

given in Table 3.3.
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Figure 3.7: Reflective metasurface unit cell model.

Two different sized (27µm and 19µm) parabolic metasurface mirrors with same

focal length of 50µm are designed. The continuous and discretized phase response

of these mirrors are given in Figure 3.8. Continuous curves correspond to ideal

phase responses while dotted-dashed curves correspond to discretized versions of

ideal phase responses. For realization of the discretized phase shift response, the

reflective metasurface unit cells in the optical resonator set are placed one by

one on phase shift response defined locations. Since, the discretized phase shift

responses have constant phase shift regions, these regions are populated by same

unit cells having same phase shift response. The distribution of these unit cells

in these regions are given in Table 3.4.

Table 3.3: Phase shift responses of modeled reflective metasurface unit cells

Antenna Type Length (nm) Phase Shift (◦)
1 40 134
2 104 177
3 122 218
4 134 258
5 146 302
6 162 349
7 206 35
8 260 51
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Table 3.4: Reflective metasurface unit cell distributions in constant phase regions
of mirrors

Mirror 1 Mirror 2

Reg No No of Ant Reg No No of Ant
0 31 0 31

1,-1 6 1,-1 6
2,-2 5 2,-2 5
3,-3 4 3,-3 4
4,-4 4 4,-4 -
5,-5 3 5,-5 -
6,-6 3 6,-6 -

For modeling the parabolic metasurface mirrors in Lumerical FDTD, reflective

metasurface unit cells are placed at the center of the simulation region. Then, the

center of a placed unit cell is shifted to the discretized phase response specified

location. Each constant phase region specified in Table 3.4 are scanned by these

unit cells. By this way, a parabolic is modeled. Since the FDTD simulations

are very time consuming, we modeled the parabolic mirrors as cylindrical mirrors

so that the periodic boundary conditions can be used to decrease computation

time. After modeling the structure, a monochromatic (850 nm) plane wave source

is placed for exciting the structure. Then the reflected field is recorded on a

near field monitor that is located below the plane wave source. Finally, this

recorded field data is transformed into far-field. This far-field data is sampled

along the normal direction (+ẑ) of the metasurface mirror and focusing behavior is

observed. This focusing behavior of metasurface mirrors can be seen in Figure 3.9

as the beam-width of the scattered field narrows at the metasurface dictated focal

plane.
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Figure 3.8: Continuous and discretized phase shift responses of metasurface mir-
rors.

Figure 3.9: Far-field distributions of reflected beam from the metasurface mirrors.

3.2.3 Metasurface Magnetic Mirror Design

In this subsection, a metallic metasurface-based mirror that relies on silver

nanogrooves and operates in the visible region of the spectrum is presented and

its resulting strong field localization capability is quantitatively analyzed, which

can be useful for reducing lasing threshold in CdSe nanostructure lasing.
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3.2.3.1 Field Localization Problem

Semiconductor nanostructure lasing has the promising functionality of high spec-

tral coverage due to quantum confinement effect [98]. This type of lasing generally

requires a metallic contact plate which reflects the incoming beam with an 180◦

phase shift. Due to this phase shift, the reflected beam reaches its peak value af-

ter propagating a quarter wavelength distance. However, since the semiconductor

nanostructure has a subwavelength thickness, the field strength inside the nanos-

tructure can be very low (closer to minimum of the field strength). Therefore,

this metallic contact configuration causes a field localization problem, thereby

increasing the lasing threshold. For reducing lasing threshold, the distribution of

the reflected field should be maximized inside the nanostructure (which is sub-

wavelength close to the metallic contact) using a contact that acts as a perfect

magnetic conductor. However, this can not be achieved using metallic contacts

since this requirement fundamentally contradicts with the boundary conditions

imposed by metals that ideally act as perfect electric conductors.

3.2.3.2 Approach, Methodology and Modeling

3.2.3.2.1 Metallic Metasurface Approach and Methodology Recently,

reflective type metasurfaces such as metasurface mirrors (metamirrors) have

started to attract increasing attention following the initial interest in transmis-

sion mode metasurface optical components [6, 50, 75, 79]. Metallic metamirros

were designed for achromatic conversion of polarization state of light [50]. Di-

electric metamirrors were designed for surpassing the reflectance of metal mirrors

and over 99% reflectance was reported at the telecommunication wavelength of

1530nm [75]. At the same wavelength, frequency selective dielectric metamirrors

with reflection phase control were also designed [79]. However, these studies were

limited to the infrared region of the spectrum. Esfandyarpour et al. studied

the surface impedance engineering of metamaterial mirrors in the visible spec-

trum (at 600nm) [6]. In that study, magnetic metamirrors were designed and

fabricated for increasing the absorption efficiency and photocurrent generation in

solar cells and close to 20% enhancement was reported. However, functionality

and performance of magnetic metamirrors were previously not studied for the

purpose of reducing lasing threshold to the best of our knowledge. Especially,
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reflectance phase engineering in the presence of semiconductor (CdSe) quantum

dots or nanoplatelets using metamirrors was not explored and analyzed in detail.

For addressing the problem of field location in contact surfaces, metallic meta-

surface approach can be used since metasurfaces allow for control of the phase

profile along the surface. Moreover, since the contact based on metasurface will

be used a reflectance-mode optical component, transmission efficiency issues of

transmission-mode metallic metasurfaces will not be encountered. Using this

approach, we developed a methodology based on designing magnetic metasur-

face mirrors (metamirrors) for engineering the intensity distribution of the re-

flected light inside the active semiconductor nanostructure layer by controlling

the reflectance phase of the metamirror. An examplary schematic describing the

metamirror that can be used for reducing lasing threshold in CdSe quantum dots

is given in Figure 3.10. While designing these magnetic metamirrors, the effect

of semiconductor nanostructures on reflectance phase should also be considered

for optimizing the intensity distribution inside the active semiconductor layer.
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Figure 3.10: Schematic of the metamirror with CdSe quantum dots on top.
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To optimize the electric field intensity inside a subwavelength active semicon-

ductor nanostructure layer on top of a metallic metasurface, reflectance from the

surface must be engineered. The reflection coefficient for a surface defined by its

permittivity and permeability takes the following form

rs =
zs − zal
zs + zal

(3.2)

for an s polarized light normally incident upon the surface [40]. zal =
√

µal
εal

and zs =
√

µs
εs

are the impedances of the active layer and the surface to be

realized as metasurface, respectively. For a high conductivity metallic surface, zs

is low with respect to zal and this results in a π radian reflectance phase thereby

diminishing the electric field inside the active layer. For enhancing the electric

field inside the active layer, structures consist of nanogrooves can be used by

exciting the surface plasmon polaritons (SPP) on the walls of the nanogrooves

for creating an interference Fabry-Perot cavity [99]. Nanogroove structures are

defined by their widths (periods) and depths and by tuning these parameters

the surface impedance can be controlled [37]. Therefore, metamirrors can be

designed by patterning nanoscale grooves inside silver (Ag) plates for engineering

the reflectance phase by controlling the surface impedance with fine tuning the

width and depth of the nanogrooves.

3.2.3.2.2 Modeling and Simulations For realizing metasurface mirrors

that can act as perfect magnetic conductors while providing strong field local-

ization, we designed metasurfaces by patterning nanoscale grooves on top of a

flat silver substrate. For modeling these metasurface mirrors and simulation the

distribution of the field reflected from these metasurfaces, we used Lumerical Fi-

nite Difference Time Domain (FDTD) solutions. Firstly, the silver contact was

modeled as a thin (along z direction) silver plate that extends along the x and y

directions of the simulation region which has a size of 800nmx800nmx1200nm.

Then, this silver plate was placed at the bottom of this simulation region. The

nanogrooves were modeles as silver rectangular prisms that extend along the y

direction of the simulation region. The width of the rectangular prisms varied be-

tween 50nm and 200nm with steps of 50nm while the depth was varied between

0nm (corresponding to the standard silver contact that ideally act as perfect

electric conductor.) and 200nm with steps of 10 nm.
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For meshing the metasurface mirror, graded meshing was used such that the

nanogrooves were meshed with the highest precision while the degree of precision

was gradually decreased as a function of the distance to the nanogrooves (along z

direction). As boundary conditions, perfectly matched layer (PML) bounday con-

dition was applied along the direction normal to the metamirror surface and peri-

odic boundary condition was used along the directions parallel to the metamirror

surface. As the light source, a monochromatic plane wave (PW) light source that

has 520nm wavelength was used and its polarization was changed orthogonally

between two subsequent simulation runs. For collecting the reflected light from

the meta-mirror, a field monitor was placed at a distance of 800nm from the

metamirror. Also, another planar field monitor was placed orthogonal to the

metamirror for recording the field distribution around the metamirror.

For modeling the behavior of the metamirror correctly, a CdSe layer that

also covers the regions inside the nanogrooves was also placed. The refractive

index data was obtained after conducting measurements with the synthesized

CdSe nanostructures. After the modeling of the nanogrooves, semiconductor

(CdSe) nanostructures were modeled as rectangular prisms filling the gaps of the

nanogrooves.

3.2.3.3 Results and Discussions

For analyzing the behavior of metasurface mirrors designed, full wave simulations

were performed using Lumerical FDTD. Figure 3.11 illustrates the field distribu-

tion on top of the metasurface magnetic mirror when excited with TE polarized

light. Although the metasurface mirror was designed to act as a magnetic meta-

surface mirror, the field distribution was very similar to the field distribution of an

ordinary metallic mirror. The reason of this behavior is anti-symmetric structure

of the mirror which can not respond to the TE polarized light as a metasurface

magnetic mirror. However, when the same metasurface was excited with TM

polarized light, the expected behavior was confirmed. This field distribution is

illustrated in Figure 3.12. As seen in Figure 3.12, electric field strength is strongly

localized around the nanogrooves. This strong localization can be very useful in

reducing lasing threshold in CdSe nanostructure lasing.
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Figure 3.11: TE polarized field distribution on top of the metasurface magnetic
mirror.

Figure 3.12: TM polarized field distribution on top of the metasurface magnetic
mirror.

87



For optimizing the field localization around nanogrooves, the groove depth is

varied between 10 nm and 200 nm with steps of 5 nm. The designed metasurface

mirrors were excited with TM polarized light and phase shifts imposed by them

were recorded using near-field monitors. These phase shift responses were plotted

in Figure 3.13. As seen in Figure 3.13, metasurface mirror with nanogroove

depth of 70 nm imposed a phase shift response close to 0, thereby acting as a

magnetic metasurface mirror. However, the response of the metasurface mirrors

were disturbed when CdSe nanostructures were modeled and filled the void inside

nanogrooves. Resulting phase shift responses were plotted Figure 3.14. This

time metasurface mirror with nanogroove depth of 40 nm imposed a phase shift

response close to 0, thereby acting as a magnetic metasurface mirror.
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Figure 3.13: Phase shift imposed by metasurface mirrors with varying nanogroove
(without CdSe) depths.

Figure 3.14: Phase shift imposed by metasurface mirrors with varying nanogroove
(filled with CdSe) depths.
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Chapter 4

MWIR Metallic Metasurface

Microlens Array with Excellent

Optical Crosstalk

Mid-wavelength infrared (MWIR) is a sub-band of the infrared part of the elec-

tromagnetic spectrum and it covers the 3− to− 5µm wavelength range. Electro-

optical applications such as infrared search and tracking systems, infrared imag-

ing systems use this MWIR region to produce signals and images [3]. The core

component inside an infrared imaging system is a Focal Plane Array (FPA) that

consists of a two-dimensional array of detectors. In MWIR region, FPA’s can

have very low noise levels (≤ 50mK) when cooled to low temperatures (≤ 90K)

and this property makes them important components for applications requiring

high signal-to-noise ratio.

In this chapter, a metallic metasurface-based microlensed FPA that relies on

asymmetric optical antennas and operates in MWIR region is presented and its

resulting light concentrating capability is quantitatively analyzed, which is useful

for suppressing optical cross-talk in MWIR-FPAs.
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4.1 Optical Crosstalk Problem

Following the improvements in nanoscale growth and fabrication technologies,

it has become possible to increase the spatial resolution of IR-FPAs without

changing the FPA size. Thanks to these improvements, compact products with

high spatial resolution can be developed, packaged and commercialized. However,

as the spatial resolution increases, pixel pitch size must decrease to keep the FPA

size unchanged. Unfortunately, optical crosstalk between adjacent pixels start

to increase tremendously as the pixel pitch size is reduced. This issue limits the

device’s spatial noise performance which is very critical for obtaining high quality

images. Therefore, a fundamental trade-off arises between high spatial resolution

and low spatial noise.

In order to compensate the drawbacks of decreasing pixel pitch size, various

strategies such as integration of microlens arrays with MWIR-FPAs and mesa

isolation can be used. In the mesa isolation method, the pixels are physically

separated by etching so that each pixel is spatially isolated from its neighbor

pixels. However, one major drawback of this method is that the etching process

can unrecoverably damage several pixels making them either dead or bad pixels.

On the other hand, in the integration of microlens arrays methodology, pixels do

not need to be physically isolated from each other thereby avoiding an etching

process. This latter methodology rather relies on controlling and managing the

incident light energy flow towards each pixel instead of changing the structure

and boundaries of pixels.

Microlens array integration methodology has been applied in a recent study

in which a refractive microlens array was integrated with mid-wave HgCdTe IR-

FPAs [2]. In that study, the analysis of this method has been conducted numeri-

cally and the effects of microlens radius and relative aperture on optical crosstalk

suppression have been reported. The refractive microlens array squeezed the size

of the Airy disk at the target pixel hence it was expected that the optical cross-

talk should be suppressed as less light should now be incident on adjacent pixels.

However, the emergence of strong first-order diffraction spots approximately at

the centers of the adjacent pixels add an additional optical cross-talk between ad-

jacent pixels and the target pixel. Therefore, the positive effect of the refractive

microlens array is canceled by the negative effect of diffraction spots. In another
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study related to microlens array integration methodology, a diffractive microlens

array was integrated with InSb MWIR-FPAs and the performance of diffractive

microlens systems with respect to the refractive microlens systems were inves-

tigated [100]. Although an improved system performance was reported in that

study, pixels of the InSb IR-FPA were also mesa-isolated. Therefore, the com-

bined effect of both methodologies suppressed the spatial cross-talk in this system

and this system still inherits the disadvantages of mesa-isolation technique.

4.2 Approach, Methodology and Modeling

In Section 3.2, metasurface lenslets and parabolic mirrors were designed using the

metasurface design methodology described in Section 3.1. Various other optical

components have also been designed using metasurfaces and novel phenomena

such as anomalous reflection and refraction have been observed in recent studies

[5, 10–30]. The reason that so many different types of optical components can

be designed with metasurfaces is the ability to control the amplitude, phase and

polarization state of light on a subwavelength scale with very high precision. As

a result of this precise controllability, it is possible to modulate wavefront of light

in a desired manner and light beam structure can be designed with new degrees

of freedom [5,10–12].

Integration of microlens array methodology relies on controlling and managing

the incident light energy flow towards each pixel as stated in Section 4.1. Similar

to controlling and managing the incident light energy, light energy focusing has

also been investigated in the context of metasurfaces [27–31]. However, to date

integration of metasurface microlens arrays with FPA’s have not been studied

and optical crosstalk problem has not been addressed in such metalens arrays.

4.2.1 Metallic Metasurface Approach and Methodology
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Figure 4.1: Schematic representing the geometry of the proposed metasurface-
based microlensed focal plane array (FPA) design [1].
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For addressing optical cross-talk problem by using metasurface approach, a

metasurface-based microlensed focal plane array that relies on asymmetric optical

antennas can be designed [see Figure 4.1 for conceptual architecture]. Then, quan-

titative analysis of this design’s resulting light concentrating capability, which

is useful for optical crosstalk suppression in mid-wave IR-FPAs, can be con-

ducted. A two-dimensional array of asymmetrically tailored optical antennas

having space-variant phase shift response and subwavelength separation forms

the basis of the proposed planar metasurface. Instead of tuning the intrinsic ma-

terial properties of these optical antennas, their resonances were tuned to realize

space-variant phase shift response.

The first part of the metasurface approach methodology involves the design of

the mentioned optical antennas followed by the analysis of their scattering char-

acteristics with finite-difference time domain (FDTD) simulations. The second

part of this methodology involves the design of metasurfaces for implementing

microlens arrays using a specific antenna set based on the analysis carried out in

the first part.

4.2.2 Modeling and Simulations

4.2.2.1 Modeling of Optical Antennas

The building blocks of the metasurface-based microlenses are asymmetrically-

tailored, V-shaped optical antennas. These antennas consist of two end-connected

gold nanorods placed on a silicon substrate. The geometry of the selected optical

antennas are shown in exemplary schematics of Figure 4.1. Connection angle of

the antennas and the length of each nanorod comprising the antenna are tuned

separately for covering the full 0− to− 2π phase shift response, which is manda-

tory for designing microlenses. For maximizing the constructive interference of

the scattered fields, the amplitude responses of the antennas were hold almost

constant. A set of 8 antennas are used in fulfilling the phase shift coverage neces-

sity; hence, an incremental phase shift response of π
4

exists between subsequent

antennas of the microlens array in the set.
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FDTD simulations were performed for every single antenna in order to de-

sign the specific geometry of the optical antennas. For performing these FDTD

simulations Lumerical Solutions FDTD was used. In order to simulate a realis-

tic geometry that can be easily fabricated, a previous metasurface study is used

as a reference and similar (scale-wise) structures were designed [52]. Therefore,

cross-section of the nanorods were designed as a square with a 100 nm width

and a 100 nm thickness. A multicoefficient model was fit by the values found in

Palik in order to input the optical constants that determine the optical proper-

ties of the antennas [101]. In order to choose the substrate on which the optical

antennas are placed, several FDTD simulations are performed with silicon and

germanium. We chose these materials as substrate candidates since high refrac-

tive index substrate such as silicon and germanium should be used for obtaining

smaller building blocks that increase the continuity of the imparted phase profile.

The optical antennas were placed on the central region of a silicon substrate after

obtaining quite similar results from both simulations. Half of the total simulation

area was filled with this silicon substrate which spans 0.75µmx0.75µmx2.5µm.

The simulation area was matched by perfectly matched layers at its boundaries

and the other half of the simulation are is modeled as air. A fixed mesh size

of 10nm along the lateral directions that spans the silicon-air interface is used.

However, graded meshing was used along the normal direction to the interface

and the antenna-silicon-air boundaries are precisely meshed. A total-field scat-

tered field (TFSF) planewave source that has a wavevector direction normal to

the antenna plane and polarization direction having 45◦ angle with the antenna

symmetry axis was used to excite the antenna from the silicon substrate side and

this source spans a volume of 0.75µmx0.75µmx3.5µm. A near-field monitor was

used to record the scattered near field and it is placed parallel to the interface at

a distance of 1.9µm from the interface. Finally, far-field transform function called

”farfieldexact” was used to obtain the amplitude and phase of the scattered field

that is cross-polarized with respect to the incident field and has direction normal

to the antenna plane.

Following an iterative simulation process, specific geometries of the 8 antennas

in the antenna set were designed. For conduction this iterative simulation process,

length of one nanorod was varied from 300nm to 600nm while length of the

other nanorod was varied from 100nm to 600nm. Also, as a third parameter,

the connection angle of the nanorods was also varied from 50◦ to 150◦ but only

specific angles that allow the antennas to be kept inside a 750nmx750nm square,
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Figure 4.2: (a) Rod lengths and connection angles of the individual optical an-
tennas. (b) Phase shift responses and normalized scattering amplitudes of the
individual optical antennas [1].

were selected. The phase shift responses and scattering amplitudes of the selected

antenna set, which cover full 0− to−2π phase shift response with an incremental

phase shift response of π
4

and have almost constant scattering amplitude, are

given in parts (a) and (b) of Figure 4.2.

We have analyzed the responses of individual building blocks of asymmetric V-

shaped nanoantennas by varying the excitation wavelength. The resulting data is

presented in (a) and (b) of Figure 4.3. In (a) of Figure 4.3, the standard deviation

in normalized amplitude response of the antennas in the designed set is given.

Even though the antenna set is optimized for the excitation length of 4.3µm, their

scattering amplitude did not vary much as the excitation wavelength is changed

within the limits of MWIR band. This broadband response characteristics is

inherent in metallic nano-antennas and previously also studied and reported by

Ni et al. [9] for the demonstration of broadband light bending and Yu et al. [10]

for the demonstration of broadband quarter wave-plates. In alignment of the

previous literature and in the light of the computations for individual antenna
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Figure 4.3: (a) Standard deviation in phase responses of the antenna set used in
building the microlens arrays. (b) Standard deviation in amplitude responses of
the antenna set used in building microlens arrays.

building blocks, it can be concluded that these antenna set can function across

the entire MWIR bandwidth.

4.2.2.2 Modeling of Microlens Arrays

Modeling of microlens array comprises of the matrix of microlenses repeated as a

unit cell in two dimensions. Narrowing the spot size of the incident beam captured

by the cross-section of a microlens is the main functionality of a microlens. In

order to realize this functionality, a metasurface having a hyperboloidally varying

phase shift response can be used. This response is mathematically formulated by

the following equation for a cylindrically symmetric structure:

θ(r) =
2π

λ
(
√
r2 + f 2 − f) (4.1)

where r is the distance to the metasurface center and f is the focal length while

λ is the central design wavelength, here selected to be 4.3µm (as an MWIR

(3µmto5µm) wavelength).

However, realizing this function practically with an array of optical antennas,
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Figure 4.4: (a)-(f) Phase shift responses of the antennas in the designed mi-
crolenses with focal lengths of 5, 10, 20, 30, 40 and 50 µm, represented with
black squared markers, respectively. Corresponding continuous phase shift re-
sponses realized by these microlenses are also shown with red curves [1].

each having an incremental phase shift, dictated the discretization of the continu-

ous profile given by Equation (4.1). For implementing this discretization process,

continuously changing portions of the continuous profile is mapped into constant

phase regions. For example, 0 − to − 4π phase shift portion of the continuous

profile was mapped to the 0 phase shift while the π
4
− to− π

2
phase shift portion of

the continuous profile was mapped to the π
4

phase shift so that only a single type

of antennas (antenna no. 4) were placed in the 0 phase shift regions while another

type of antennas (antenna no. 3) were placed in the π
4

phase shift region. These

mentioned continuous phase profile and its discretization are given in Figure 4.4

for the central unit cells of the designed microlens arrays.

The designed microlens arrays had a unit cell having a fixed width of 30µm.

This size is a commercially available MWIR-FPA pixel pitch size and it contains

40 nano-antennas located on a square silicon substrate of 750 nm side length.

This side length is determined with respect to the resonance condition of the
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Figure 4.5: Scattering cross-section of the V-shaped nanoantenna having equal
arm lengths of 395 nm and an opening angle of 78◦.

antennas. The following equation describes this resonance condition:

l =
λ0

2neff
(4.2)

where λ is the wavelength in free psace and neff is the medium’s effective refrac-

tive index while l is the length of the antenna. Using 4.3µm as the wavelength

and 2.6 as the effective refractive index,l is calculated to be 826 nm. Although

a single wavelength was used as a starting point for the design, the design was

checked for the entire mid-wave IR by investigating the behavior of the anten-

nas in different wavelengths of MWIR band Figure 4.3, confirming its operation

across the entire band. For placing antennas having similar total lengths to this

resonance length (hence covering a large phase shift) and picking a length that is

an integral divisor of 30 µm, the side length was determined as 750 nm.

At this point, it is worth noting that, using this side length, neighboring V-

antenna units remain uncoupled since no noticeable coupling effect between ad-

jacent antennas that can alter their scattering response was observed. We have

analyzed the scattering cross-section of our unit elements consisting of V-shaped
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nanoantennas after simulating them in Lumerical FDTD (by using optical power

analysis group for cross-section), which is shown in Figure 4.5. After running the

analysis, we have found that the scattering cross-section for our largest and small-

est sized V-shaped nanoantennas are 4.3× 10−13m2 and 3.8× 10−13m2. However,

our unit cell has a size of 750nm× 750nm, making 5.62× 10−13m2, which is 30%

larger than the scattering cross-section of our largest V-antenna. We compared

the scattering amplitude and phase responses of our unit cells by both varying the

size of the unit cell and repeating the structure in one direction and we obtained

similar results for both of the responses.

Lumerical Solutions FDTD was also used for performing the full-wave simu-

lations of the designs microlens arrays. This time, periodic boundary conditions

were used as constraints instead of PML along the directions tangential to the

antenna plane. Also, the TFSF source was replaced with a planewave source.

Again, we modeled cylindrical microlens arrays instead of spherical microlens ar-

rays by utilizing the symmetry of the structure. This choice is necessary if the

numerical solution is desired to be tractable in a reasonable amount of time. A

monitor was placed on top of the microlens array structure at a distance of 1.9µm

from the interface so that near-field distributions can be recorded. The far-field

transformation function used in simulations of antennas was also used to obtain

the intensity distributions (as a function of distance to the microlens array) of

the cross-polarized field with respect to the source polarization. In Figure 4.6,

the far-field transformed intensity distributions are given for 6 different microlens

array structures corresponding to the focal length varied realizations of the hy-

perboloidally varying phase shift response. When performing these simulations,

only the central unit cell of the microlens array was illuminated for analyzing the

concentration of the focused light. In the ideal case, this focused light should

only be present in the central IR-FPA pixel that spans 30µm width in the focal

plane.
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Figure 4.6: Intensity distributions of the cross-polarized field obtained by illumi-
nating the central unit cell of the proposed metasurface-based FPAs [1].
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4.3 Results and Discussions

Point-spread function (PSF) is used to characterize the optical cross-talk in

FPA’s [2]. In order to quantitatively analyze the optical cross-talk in the pro-

posed designs, the corresponding areas under the PSF curve of the distribution

in the central pixel and its nearest neighbor of the IR-FPA is integrated. A

moderate f-number (1.8) is chosen for two reference systems. One of them is a

system that does not include microlenses while the other one is a system that

is composed of refractive microlens arrays (which is the same as the one used in

a previous microlens study [2]). Following the integration of the corresponding

areas in the reference study, it was found that 95.7% and 94.9% of the total en-

ergy were focused to the central pixel for the system without a microlens and

the refractive microlens system, respectively. However, 2.15% and 2.55% of the

energy were also focused to each one of the nearest neighbor pixels, respectively.

2.2% and 2.6% optical crosstalk’s were obtained following the division of these

ratios. Surprisingly, the optical crosstalk of the microlens system was higher than

the reference system without microlenses and the reason for this situation is the

emergence of the strong first order diffraction spots at the center of the adjacent

pixels. These diffraction spots issue is a fundamental drawback of the refractive

microlens array systems. Metasurface based microlens arrays do not include this

drawback and over 96% of the incident energy is focused in the central pixel in

all of the designs with the focal length parameters of 10, 20, 30, 40 and 50 µm.

The highest value obtained was 98.4% in the case of 10 µm focal length struc-

ture. This enhancement is a direct consequence of the inherent non-diffractive

characteristics of metasurfaces. However, despite this improvement, it should

also be noted that asymmetric metallic V-shaped nanoantennas only focus cross-

polarized light and, as a result, total focusing efficiency of the microlens arrays

is decreased when both polarizations are taken into consideration. The optical

cross-talk values are given in Table 4.1.

Spatial cross-talk consists of two components and one of them is the optical

crosstalk is one of the two components of spatial crosstalk in IR-FPA pixels

and the other one is the electrical crosstalk [2]. The spatial cross-talk for the

reference system and the refractive microlens system were found to be 2.82% and

2.9%, respectively, in the reference refractive microlens study. These values are

compared with the optical cross-talk performances and it was observed that the
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Table 4.1: Percentages of optical energy in the central and neighbor pixels [1]

MWIR-FPA’s Halfwidth (µm) Optical Cross-talk (%)
Reference 7.7 2.2

Refractive microlens 2.6 2.6
f = 10 µm microlens 1.0 0.8
f = 20 µm microlens 1.2 1.0
f = 30 µm microlens 1.7 2.0
f = 40 µm microlens 2.0 1.4
f = 50 µm microlens 2.2 1.9

resulting spatial crosstalk is much closer and the reason for this is a potential

reduction in the spatial cross-talk due to much narrowed Airy disk in refractive

microlenses. The normal halfwidth of the reference system was 9 µm and this was

reduced to 3 µm (approximate to a 9-fold narrowing) with refractive microlens

arrays. The proposed metasurface designs have normal halfwidths shorter than

1.0, 1.2, 1.7 and 2 µm for the focal length parameters of 10, 20, 30 and 40 µm,

respectively, (The reference system has a 7.74 µm normal halfwidth that can be

calculated by Equation (4.3)). Therefore, a substantial narrowing is achieved with

the metasurface-based microlens arrays (narrowing roughly by 38-folds). This

substantial narrowing shall also lead to further reduction of the spatial crosstalk

in IR-FPAs with metasurface-based microlenses already allowing for much weaker

optical crosstalk.

HW = λ0F# (4.3)
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Chapter 5

MWIR Dielectric Metasurface

Microlens Array with High

Transmission Efficiency and

Good Optical Crosstalk

In this chapter, a dielectric metasurface-based microlensed FPA that relies on

silicon nanodisks and operates in MWIR region is presented and its resulting

high efficiency light concentrating capability is quantitatively analyzed, which is

useful for suppressing optical cross-talk in MWIR-FPAs with higher f-numbers.

5.1 Efficiency Problem

One of the critical performance parameters of MWIR FPAs is its optical crosstalk

as stated in Section 4.1. This noise parameter is especially important for electro-

optical systems used in infrared imaging applications such as detection and track-

ing of small and dim (low signal-to-noise ratio (SNR)) objects. Another important

parameter of MWIR FPAs is its f-number and relatively higher f-number MWIR
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FPAs can be required for applications that are very sensitive to optical aberra-

tions (Optical aberrations increase with smaller f-number). However, the optical

crosstalk of conventional MWIR FPAs also increases with higher f-numbers [2].

To overcome these difficulties, different methodologies based on integration of

different types of microlens arrays has been studied [1, 2]. The spot size of the

incoming beam was narrowed much better than conventional MWIR FPAs when

refractive type microlens arrays was used. Despite this promising result, the opti-

cal crosstalk performance was not improved surprisingly and the primary reason is

the emergence of diffraction spots. The integration of metallic metasurface type

microlens arrays for suppressing optical crosstalk was discussed in Chapter 4.

Although an excellent optical crosstalk performance (leq 1%) was obtained, the

focusing efficiency was extremely low to make metallic metasurfaces of MWIR

FPAs practical.

Metallic metasurfaces has been studied extensively over the last couple of years

as stated in Chapter 2 and offer promising features such as broadband functional-

ity. However, the device efficiency has become a common problem of transmission-

mode metallic metasurfaces [9,13,14,21,25,27,45–53,55–62]. Here high absorption

losses of metallic nanoantennas and cross-polarized focusing scheme dictated by

asymmetric antennas are the main reasons of this typical drawback. Because of

this phenomena, practical usage of metallic metasurfaces is limited to reflectance

mode optical components. Therefore, for designing an efficient metasurface mi-

crolens array of MWIR FPAs that can be used in practice, metallic nanoantennas

should be replaced by much more efficient nanoantennas.

5.2 Approach, Methodology and Modeling

5.2.1 Dielectric Metasurface Approach and Methodology

Recently, dielectric nanoantennas have been used as building blocks of dielectric

metasurfaces and highly efficient transmission-mode dielectric metasurfaces were

designed [67,69,77,102–104]. Dielectric metalenses with high numerical aperture

were studied and diffraction-limited focusing efficiency up to 86% was claimed to

be observed after realizing these metalenses using TiO2 nanofins [77]. However,
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the metalens design was for the visible portion of the spectrum and length of the

TiO2 nanofins were too large for scaling and designing a nanoantenna which can

be used in realization of metasurface microlens arrays of MWIR FPAs. Also, sub-

wavelength thick high numerical aperture metalenses were studied and focusing

efficiency reaching 82% was claimed to be observed after realizing these metal-

enses using silicon posts on hexagonal lattices [69]. However, the diameter of the

nanopost were also too large for scaling and designing a nanoantenna which can

be used in realization of metasurface microlens arrays of MWIR FPAs having

pitch size less than 30 µm. Also, the metalens designs were for the near-infrared

portion of the spectrum. Using silicon nanodisks having relatively smaller size

that can be scaled and used in realization of such a metasurface microlens, Gaus-

sian to Vortex beam shaping was studied but the device efficiency was slightly

lower (close to 70%) and the design was also for the near infrared [67].

For addressing the optical crosstalk problem of conventional MWIR FPAs and

efficiency problem of metallic metasurfaces of MWIR FPAs, we used an approach

based on designing optical crosstalk optimized dielectric metasurfaces. First part

of this approach is increasing the device efficiency dramatically and for doing so,

a new dielectric metasurface of MWIR FPAs using silicon nanodisks is proposed.

However, while improving the device efficiency dramatically, the superior optical

crosstalk performance of metallic metasurfaces (which however suffer undesir-

ably high, fundamental absorptive loss) of MWIR FPAs should also be fullfilled.

Another key consideration that should be taken into account is preventing the

increase in optical crosstalk due to increase in f-number, thereby paving the way

of higher f-number MWIR FPAs with low optical crosstalk. For achieving these

altogether, silicon nanodisks, which can cover the full 0-to-2π phase shift range

(see Fig. Figure 5.1(a) for the phase shift response of dielectric nanoantennas)

should replace the asymmetrically tailored metallic antennas used in Chapter 4.

This is a necessary condition for designing metasurfaces and providing higher

transmission efficiency.

Using this approach, first, we focused on the specific design of silicon nanodisks

that fullfills the phase shift criterion with high transmission efficiency in MWIR.

Then, phase shift profile of the microlens arrays were designed for dramatically

increasing focusing efficiency and satisfying good optical crosstalk while prevent-

ing the increase in optical crosstalk due to increase in f-number. Following the

design, the microlens array was realized by placing the designed nanodisks in a
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set of 8 nanoantennas in appropriate locations of an array with subwavelength

separation (see Fig. Figure 5.1(b) and Fig. Figure 5.1(c)).
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Figure 5.1: (a) Scattering amplitude and phase shift responses of the silicon nan-
odisks that cover the 0-to-2π phase shift coverage with highly uniform amplitude
response (Geometry of the Si nanodisk is shown in the inset). (b) Ideal (continu-
ous) phase profile that should be imparted by a single microlens in the microlens
array having a pitch length of 20 µm. (c) Discretization of the ideal phase profile
for realization with silicon nanodisks inside unit cells having an edge length of
1800 nm.
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The ideal phase profile that must be imparted by a metalens is given by

Eq.Equation (5.1). For achieving excellent optical crosstalk performance while

keeping f-number (f/#) more than a reasonably high value (1.5) (increasing FoM),

a design methodology based on restriction of a parameter of Eq.Equation (5.1)

was developed. According to this design methodology, focal length variable was

picked as the design variable and its value was limited to a certain range of values

that provide a phase shift of at least π radians between the center and edge of

a microlens in the microlens array while keeping a ratio that is greater than the

threshold of 1.5 between itself and aperture size of the microlens. This methodol-

ogy was used in designing various dielectric metasurfaces of MWIR FPAs having

focal length varied from 15 to 90 µm and aperture size varied from 20 to 30 µm

depending on the value of focal length parameter.

θ =
2π

λ

(√
x2 + y2 + f 2 − f

)
(5.1)

5.2.2 Modeling and Simulations

For designing the set of silicon nanodisks, the resonance and transmission con-

ditions were used for computing the initial parameters for diameter and height

of nanodisks. For the MWIR band (3-to-5 µm), the diameter was varied from

approximately 1000 to 1800 nm while the height was half of the diameter values.

The silicon nanodisk is placed inside a unit cell which is a square with an edge

length varied from 1500 to 2500 nm (during different design runs). The mutual

coupling between nanoantennas was taken into account and minimized when de-

termining the edge length for unit cell. For modeling and simulating these silicon

nanodisks, full-wave simulations were performed using Lumerical finite difference

time domain (FDTD) solver. Each nanodisk was placed at the center of a simu-

lation region and surrounded by a homogenous medium. A monochromatic plane

wave source is used to excite the nanodisk and a near-field monitor is placed to

record the near-field data. Then, the near-field data was transformed into far-field

data by using transformation functions provided by Lumerical FDTD. Periodic

boundary conditions were used as boundary conditions along the axial directions

and perfectly matched layers (PML) boundary condition was imposed at the nor-

mal direction as the boundary condition. After conducting a series of simulation

runs, an optimized silicon nanodisk set was designed for the design wavelength of

3.2 µm and for the homogeneous medium refractive index of 1.42 which is close
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to the refractive index of fused silica. The diameters, phase shift and amplitude

responses of these silicon nanodisks were given in Table Table 5.1 (Height was

fixed at 550 nm). The main advantage gained by replacing metallic nanoanten-

nas by silicon nanodisks was the dramatically increased transmission efficiency.

For calculating the transmission efficiency of metallic and dielectric unit cells

that will be used in realizing metasurfaces, full wave simulations were performed

and transmitted power was recorded on a field monitor. The unit cells contain-

ing asymmetrically shaped metallic nanoantennas scattered cross-polarized light

with an efficiency of 11% while the unit cells containing the silicon nanodisks

transmitted any polarization with an efficiency more than 65% and even reaching

90% for the diameter of 1020 nm (this diameter to height ratio most probably

corresponds to the Kerkers condition at which the electric and magnetic dipoles

spectrally overlap, allowing almost unity transmission [94]).

Table 5.1: Far-field responses of designed silicon nanodisks.

Nanodisk No Diameter (nm) Phase shift (◦) Scattering amp.
1 1240 35 0.94
2 1320 79 0.82
3 900 125 0.92
4 1020 167 0.98
5 1090 214 0.82
6 1130 256 0.77
7 1160 295 0.77
8 1200 347 0.87

For realizing the designed phase profile with Si nanodisks, this phase profile

must be discretized. For implementing this discretization process, continuously

changing portions of the continuous profile is mapped into constant phase regions.

For example, 0− to−4π phase shift portion of the continuous profile was mapped

to the 0 phase shift while the π
4
− to − π

2
phase shift portion of the continuous

profile was mapped to the π
4

phase shift so that only a single type of nanodisk

(nanodisk no. 1) were placed in the 0 phase shift regions while another type of

nanodisk (nanodisk no. 1) were placed in the π
4

phase shift region. (See Fig.

5.2(a) for the realization of the central microlens with silicon nanodisks).
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Figure 5.2: (a) Realization of the optimized design’s central microlens by sili-
con nanodisks (color of unit cells are graded within constant phase regions). (b)
Far-field intensity distribution of light focused by the central microlens of the op-
timized design when excited with either TM or TE polarized light. (c) Far-field
intensity distribution of light focused by the central microlens of the optimized
design for the wavelength of 3.5 µm which is different from the design wave-
length. (d) Far-field intensity distribution of light focused by different pixels of
the optimized microlens array design.
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After realization, full wave simulations were performed by exciting these mi-

crolens arrays with both polarizations (TM and TE) of light. For the source, a

monochromatic plane wave with the design wavelength of 3.2 µm was used. In

Fig. Figure 5.2(b), far-field distribution of light (which was the same distribution

for both TM and TE polarizations of light) scattered from the central microlens

of the optimized microlens array design is presented. As understood from Fig.

Figure 5.2(b), unlike the metallic metasurfaces that require cross-polarization

scheme to function, the dielectric metasurface microlens can focus both polariza-

tions of light efficiently due to its cylindrically symmetric structure. Since the

MWIR FPAs are designed to function at a certain portion of spectrum (not just a

single wavelength), we simulated the behavior of dielectric metasurface microlens

array at different wavelengths. When the source wavelength was changed to 3.5

µm (300 nm away from the design wavelength) for analyzing the device perfor-

mance at a different wavelength, we observed that the focusing behavior of the

microlens array was disturbed (See Fig. Figure 5.2(c) for the distribution of 3.5

µm wavelength light from the same central microlens). This is a drawback of

the dielectric metasurfaces when compared to the metallic metasurfaces that can

work over a broader range of wavelengths. However, the focusing efficiency of the

dielectric metasurface is more than 80% which is a dramatic improvement con-

sidering the very low focusing efficiency (11%) of metallic metasurfaces. Finally,

far-field light distribution of all the microlenses in the optimized design is given

in Fig. Figure 5.2(d).

5.3 Results and Discussions

For MWIR FPAs, optical crosstalk is characterized by point spread function

(PSF) [2]. When the incoming light from a point source is focused on a pixel

of the FPA, its energy is distributed spatially. Although main portion of the

distribution is inside the central pixel, some portion of it leaks to neighbor pixels

and this is the source of optical crosstalk. Therefore, optical crosstalk can be

calculated as the ratio of the corresponding PSF distributions inside the neigh-

bor and central pixels. Eq. Equation (5.2) can be used for computing optical

crosstalk. The optical crosstalk values of designed microlens arrays were com-

pared with other types (refractive and metallic metasurface) of microlens arrays
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and conventional MWIR FPAs. The halfwidths of the focused beams and optical

crosstalk values are given in Table 5.2. Although dielectric metasurfaces have

lower optical crosstalk (≤3%) than refractive microlens arrays and conventional

MWIR FPAs, metallic metasurfaces have the lowest optical crosstalk (≤2%) for

f-number greater than 2.0. The primary reason of the slightly degraded optical

crosstalk performance is undersampling of the phase profile due to greater unit

cell size of dielectric metasurfaces (more than twice of the metallic unit cells).

Table 5.2: Halfwidth and optical crosstalk values of different types of MWIR
FPAs

IR-FPAs Halfwidth (µm) Optical Crosstalk (◦)
f/2.0 Conventional 6.4 3.2
f/2.8 Conventional 8.9 4.1
f/2.0 Refractive M.A. 3.0 3.0
f/2.0 Metallic Metasurface M.A. 2.2 2.0
f/2.6 Metallic Metasurface M.A. 2.8 2.5
f/2.0 Dielectric Metasurface M. A. 2.4 2.5
f/3.0 Dielectric Metasurface M. A. 3.0 2.9

The transmission (focusing) efficiency of designed microlens arrays were com-

pared with other types (refractive and metallic metasurface) of microlens arrays

and conventional MWIR FPAs. The resulting values are given in Table 5.3. As

expected, dielectric metasurfaces (≥80%) outperform the metallic ones (≤11%)

by a promising factor of 8, enabling the practical usage of microlens arrays based

on dielectric metasurfaces. Main reasons for this improvement are the lack of

cross-polarization scheme and removal of the intrinsic absorption losses occurring

in metallic nanoantennas.

Table 5.3: Transmission (focusing) efficiencies of metasurface microlens arrays

IR-FPAs Focusing efficiency (◦)
f/2.0 Metallic Metasurface M.A. 10.4
f/2.6 Metallic Metasurface M.A. 10.7
f/2.0 Dielectric Metasurface M. A. 68.5
f/3.0 Dielectric Metasurface M. A. 80.6

Crosstalk = 100×

∫
Aneighbor

PSF (x, y)dA∫
Acentral

PSF (x, y)dA
(5.2)
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For infrared imaging applications regarding the detection and tracking of small

objects with low SNR, firstly, the photons irradiated from the object should be

collected (focused) on the FPA as much as possible. Thus, the transmission ef-

ficiency of any component betweent the FPA and the object (such as microlens

arrays) should be as high as possible. More importantly, these photons should

be collected by the right pixel (by engineering the PSF) by minimizing the opti-

cal crosstalk for improving the spatial SNR. However, conventional MWIR FPAs

with relatively lower optical crosstalk has small f-numbers which is disadvan-

tageous for reducing optical aberrations [2]. Therefore, an MWIR FPA should

have a high FoM, which is directly proportional to the transmission efficiency

and f-number while inversely proportional to the optical crosstalk. In designing

and optimizing our dielectric metasurfaces, we aimed to maximize this FoM. Fig

Figure 5.3 shows the FoM comparison of different types of MWIR FPAs. Despite

achieving excellent optical crosstalk, metallic metasurfaces of MWIR FPAs have

the lowest FoM values due to their very poor focusing efficiency. Refractive mi-

crolens array MWIR FPAs do not show any improvement regarding either optical

crosstalk or f-number, thereby the FoM. The arrow in Fig Figure 5.3 shows the

optimization process of our proposed metasurfaces which have the highest FoM

after achieving better optical crosstalk values (with higher f-numbers) than reflec-

tive microlens array and conventional MWIR FPAs while having a dramatically

improved transmission efficiency compared to the metallic metasurfaces.
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Figure 5.3: FoM comparisons of different types of MWIR FPAs showing supe-
rior performance of proposed (dielectric) metasurface microlensed (green hexa-
gram marker) FPAs over conventional [2] (blue square markers suffering from
higher optical crosstalk), refractive microlensed [2] (red circle marker suffering
from diffraction noise) and metallic metasurface microlensed [1] (yellow penta-
gram marker suffering from very poor transmission performance) FPAs.

115



To conclude this chapter, we have proposed and demonstrated an efficient,

high-SNR, low-crosstalk microlens array integrated MWIR FPA designs based

on dielectric metasurfaces that can be used in MWIR portion of the infrared

spectrum. We confirmed the expected behavior of these designs and analyzed

the focusing efficiencies and crosstalk performances by performing full-wave sim-

ulations in Lumerical FDTD and compared these results to those of the microlens

arrays based on metallic metasurfaces and other types of microlens arrays and

conventional MWIR FPAs. We showed that high focusing efficiency (over 80%)

can be obtained while achieving best figure of merit (at a level of 84) and pre-

serving ultralow optical crosstalk (at a level of 2.6%) which is still superior to

refractive microlens arrayed MWIR FPAs without the inclusion of mesa-isolation

technique. These MWIR microlens arrays can be used to improve the spatial

noise performance of corresponding MWIR FPAs so that small objects with low

SNR can possibly be detected at much lower false alarm rates.
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Chapter 6

Conclusion and Future Outlook

Optical components are key parts of the electro-optical (EO) and infrared (IR)

systems. However, conventional optical components have bulky structure that can

include multiple parts and the choice of transparent material is limited in certain

portions of the electro-magnetic spectrum. Due to these drawbacks, the system

complexity and cost of EO and IR systems increase. Moreover, the functionality

and performance of these systems can also be limited and degraded when con-

ventional optical components are used such as the emergence of diffraction spots

increased spatial cross-talk when microlens arrays are built from refractive lenses.

Metamaterials generalized the concept of transformation optics and enabled

emergence of a new class of optical components. New phenomena such as ab-

normal light bending, sub-wavelength focusing and cloaking have been shown.

However, despite the addition of these new functionalities, material characteris-

tics still impose rigid restrictions of usual Snell’s law on capabilities of optical

components based on metamaterials. Recently, metasurfaces, two-dimensional

counterparts of metamaterials, have been investigated and relying on a different

concept in which abrupt phase changes are used, new optical components such

as meta-lenses and meta-holograms are designed, fabricated and characterized.

However, focal plane arrays (FPAs) have not been studied using metasurfaces

and optical-crosstalk problem have not been dealt with such meta-lens arrays.

Alternatively, we proposed and designed new optical components based on
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metasurfaces and addressed the problems of optical-crosstalk and focusing effi-

ciency in MWIR FPAs using the metasurface concept. To summarize, in this

thesis study:

1. We developed simple nanoantenna models for different shapes of metallic

and dielectric nanoantennas. Then, we derived the integral equations for

finding the current distributions on metallic nanoantennas using method of

moments.

2. We characterized the far-field amplitude and phase shift responses of metal-

lic nanoantennas by re-radiating the current distributions that are calcu-

lated using the simple models we developed . Then, we probed a large

parameter space for finding suitable nanoantenna types that can be used

to built metasurfaces.

3. We developed a more realistic model that can be used in performing full-

wave simulations in order to find precise metallic and dielectric nanoan-

tennas that can be used to built high-performance metasurface lenses and

metasurface mirrors.

4. We developed a design methodology that can be used to model optical

components from metasurfaces. Then, using this design methodology we

designed metasurface lenses, metasurface parabolic mirrors and metasurface

magnetic mirrors. We investigated the far-field distributions of scattered

light from these models and confirmed the predescribed functionalities of

metasurface lenses and mirrors.

5. We designed sets of asymmetrically shaped metallic nanoantennas and sil-

icon nanodisks that have incremental phase shifts of π
4

and an almost con-

stant amplitude response in order to maximize the constructive interference

that defines the functionality of metasurface lenslets.

6. We proposed and designed metallic MWIR microlens arrays built from the

set of asymmetrically shaped optical antennas. By performing full-wave

simulations and by varying the design parameter (f) of microlens arrays, we

obtained far-field distributions of cross-polarized scattered light. Then, we

compared the spot size narrowing ability and optical-crosstalk performance

of our designs with reference systems (one without microlens arrays and one
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with refractive microlens arrays) and showed the superior optical-crosstalk

suppression ability of microlens arrays designed from metasurfaces.

7. We proposed and designed dielectric MWIR microlens arrays built from

the set of silicon nanodisks. By performing full-wave simulations and by

varying the design parameter (f) of microlens arrays, we obtained far-field

distributions of cross-polarized scattered light. Then, we compared the

optical-crosstalk performance and focusing efficiency of our designs with

reference systems (MWIR FPAs without microlens arrays, MWIR FPAs

with refractive microlens arrays and MWIR FPAs with metallic metasurface

microlens arrays) and showed the superior figure of merit performance of

microlens arrays designed from dielectric metasurfaces.

6.1 Scientific Contributions

Our research studies began with the investigation of the energy transfer between

excitons and plasmons. We proposed and designed several architectures of cas-

caded nanofilms that consist of semiconductor quantum dots (QD) and metallic

nanoparticles (MNP). After fabricating these devices with Layer-by-Layer as-

sembly and characterizing the optical properties, we observed a 2.7 fold emission

enhancement in acceptor QDs and showed that with precise engineering of the

distance and arrangement of QDs and MNPs, emission of QDs can be further

enhanced. This study has led to publications of a science-citation index journal

(Nano Letters) and two refereed international conference papers [105–107].

This research work has led to several designs of a new-class of optical compo-

nents using metasurfaces both in transmitting and reflecting mode. For build-

ing these optical components from optical resonators, different sets of metallic

nanoantennas were designed. In order to design these nanoantennas, simple mod-

els of metallic nanoantennas were developed after solving the integral equations

describing the current distributions on these antennas. After gaining experience

in designing several optical components and antenna sets, we improved the am-

plitude response uniformity performance of antennas by adding another degree of

freedom in geometry of the nanoantennas. Then, using these nanoantennas, meta-

surface microlens arrays are designed and modeled in order to address the optical
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crosstalk problem in MWIR-FPA’s. Superior optical crosstalk suppression and

beam narrowing properties of these designs are shown and compared to reference

systems such as refractive microlens arrays. This study also led to a publication of

a science-citation index journal (Optics Express) [1]. However, since the focusing

efficiencies of metallic metasurface microlens arrays was too low to make these de-

vices practical, we focused on designing and modeling microlens arrays built from

dielectric metasurfaces for increasing the device efficiency dramatically. First, we

designed a set of silicon nanodisks for realizing dielectric metasurface microlens

arrays. Then, we confirmed the superior focusing efficiency of dielectric metasur-

face microlens arrays by performing full-wave simulations. Finally, we optimized

our dielectric metasurface designs for also achieving low optical crosstalk. This

study also led to a manuscript which is submitted to the Applied Physics Letters

journal.

6.2 Future Outlook

MWIR FPAs are core components of EO and IR systems used in detection and

tracking of objects with low signal-to-noise ratio (SNR). As a future work, we aim

to study the integration of dielectric metasurface microlens arrays to MWIR FPAs

for reducing the optical crosstalk of the system without degrading transmission

efficiency, thereby increasing the SNR of small and dim objects spatially. By

increasing the SNR and reducing crosstalk, the false alarm rates of such electro-

optical systems can be reduced and the reliability of the system in detection and

tracking of small and dim objects can increase.
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