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 Semiconductor nanorods (NRs) are of great interest for both 

scientifi c fundamental research and technological applica-

tions owing to their collective optical, electronic and mag-

netic properties, such as linearly polarized emission, [  1–3  ]  

higher photon absorption cross-section, [  4  ]  stronger electric 

dipoles, [  5  ,  6  ]  and effi cient one-dimensional electrical trans-

port, [  7  ]  which are related to their anisotropic shape. Over the 

past few years, a fi ne control over single-component semi-

conductor nanorods has been achieved by colloidal chem-

istry routes. [  8–18  ]  However, the growth of multicomponent 

nanorods has been relatively less developed. This is mainly 

due to the distinct material components characterized with 

different physical properties, surface chemistry and mor-

phologies. [  19  ]  The study of multicomponent nanoparticles, 

consisting of two or more components within each particle, 

is important both for creating multifunctional nanomaterials 

and for controlling electronic coupling between nanoscale 

units. [  14  ]  Recently, great development has been made in the 

multicomponent nanorods in heterostructures, [  20–26  ]  leading 

to revolutionary applications in many fi elds such as catalysis, 

photovoltaic devices, and sensors. For example, Manna et 

al. [  25  ]  reported the synthesis of CdSe/CdS/ZnS double shell 

nanorods with high photoluminescence effi ciency biolabe-

ling probes for cell labeling applications. Very recently, highly 

emissive CdSe/CdS rod in rod core/shell heterostructure with 

strong linear polarization has been prepared by Banin and 

co-workers using a seeded-growth approach for potential 
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optical and optoelectronic application. [  20  ]  Despite the signifi -

cant advancements in multicomponent semiconductor het-

erostructured nanorods, little progress has been made in the 

solid solution counterparts. Solid solutions possess a homoge-

neous crystalline structure, [  27–32  ]  in which one or more kinds 

of atoms or molecules may be partly substituted without 

changing the underlying structure. Semiconductor solid solu-

tion nanomaterials [  33  ]  with tunable electronic structures are 

of particular interest because of the effective combination 

of two or more distinct semiconducting components in one 

single nanostructure. However, unlike heterostructures, there 

are no obvious heterointerfaces in solid solutions, and it is 

more diffi cult to achieve the morphology and size control. 

Thus there have been only few reports in the literatures on 

the synthesis of semiconductor solid solution mircospheres [  34  ]  

and nanocages, [  35  ]  let alone the orientation growth of semi-

conductor solid solutions, which requires advanced growth 

control. 

 On the other hand, currently luminescent semiconductor 

nanoparticles (quantum dots, nanowires, nanorods, etc.) 

are primarily based on the cadmium cation-based mate-

rials with intrinsic toxicity, limiting the range of their uses 

for environmentally-friendly applications. [  36–47  ]  To date, the 

synthesis of I–III–VI semiconductor nanoparticles such as 

CuInS 2  and AgInS 2  has been intensively investigated due to 

their low intrinsic toxicity. [  48–53  ]  Among them, the AgInS 2 -

ZnS solid solutions consisting of ZnS with a wide band gap 
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     Figure  1 .     (a) XRD patterns of AgInS 2 -ZnS solid solution nanorods prepared by decomposition 
of (AgIn) x Zn 2(1-x) (S 2 CN(C 2 H 5 ) 2 ) 4  (x  =  0.65). Reference patterns of bulk ZnS and AgInS 2  are 
also shown. TEM images of (b) pure ZnS ( x  =   0) nanoparticles and (c) pure AgInS 2  ( x  =   1) 
nanoparticles.  
(E g   =  3.8 eV) and AgInS 2  with a narrow band gap (E g   =  

1.80 eV) exhibit appealing optical properties including tun-

able emission spectrum, large absorption coeffi cient and high 

quantum effi ciency, offering great potential as an alternative 

for cadimium-based materials. [  54–57  ]  A pioneer work on the 

preparation of AgInS 2 -ZnS solid solution nanoparticles was 

reported by Torimoto’s group where the AgInS 2 -ZnS solid 

solution nanoparticles with excellent luminescence properties 

were successfully synthesized by a thermal decomposition of 

precursor of (AgIn) x Zn 2(1−x) (DDTC) in N 2  atmosphere. [  55  ]  

However, the resulting particles were irregular and the yield 

was low. Since the size, shape and structure of semiconduc-

tors are vital parameters for their physical and chemical 

properties, developing effi cient methods for controlled syn-

thesis of AgInS 2 -ZnS solid solutions is of signifi cant impor-

tance for their further applications. 

 Herein, we report the facile synthesis of AgInS 2 -ZnS 

solid solution nanorods by a single-step one-pot solvothermal 

method, which both enables size control and allows for emis-

sion spectrum tunability with molar concentration. These 

well-dispersed AgInS 2 -ZnS solid solution nanorods exhibit 

excellent photoluminescence emission. The anisotropic 

growth mechanism for AgInS 2 -ZnS solid solution nanorods 

has been investigated in detail by manipulating their growth 

kinetics. In addition, we found that the chemical composi-

tion of AgInS 2 -ZnS solid solutions plays an important role in 

the process of nanorod formation and the uniform nanorods 

were only obtained when the mole fraction of AgInS 2  in solid 

solutions lies between 38% and 48%. 

 In a typical synthesis, 50 mg of (AgIn) x Zn 2(1-x) (S 2 

CN(C 2 H 5 ) 2 ) 4  was added into a solvent made of 10 mmol 

of OA, 10 mmol of ODA, and 20 mmol of ODE in a 
90 www.small-journal.com © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, W
three-necked fl ask at room temperature. 

The slurry was then heated to 100  ° C to 

remove water and oxygen with vigorous 

magnetic stirring under vacuum to form 

an optically transparent solution. Sub-

sequently, the solution was heated to a 

temperature to 200  ° C for 30 min under 

Ar atmosphere. After cooling to a room 

temperature, the resulting nanorods were 

precipitated with excess ethanol and then 

washed with ethanol and drying. The as-

prepared solid solution nanorods were 

easily re-dispersed in various nonpolar 

organic solvents (e.g., chloroform). The 

precursor (AgIn)  x  Zn 2(1−   x   )( S 2 CN(C 2 H 5 ) 2 ) 4  

was prepared using the reported 

method. [  55  ]  

 The crystal structure of the resulting 

AgInS 2 -ZnS solid solution nanorods was 

investigated by X-ray powder diffraction 

(XRD) with Cu K α  radiation. As shown in 

 Figure    1  a, all of the peaks match those of 

bulk hexagonal ZnS (no. JCPDS 05-0492), 

and the sample therefore does not contain 

other crystal phases, e.g., Ag 2 S or In 2 S 3 , 

except for AgInS 2  (though there is a peak 

at around 40 °  for the bulk wurtzite ZnS, 
there is no such peak for nanosized wurtzite ZnS). It can be 

seen that each peak is shifted to a lower angle compared to 

that of ZnS because of the presence of AgInS 2  and the peak 

positions lie between the corresponding peaks of bulk hex-

agonal ZnS and tetragonal AgInS 2 . These facts indicate that 

the resulting nanorods were not a mixture of ZnS and AgInS 2  

but a AgInS 2 -ZnS solid solution, which is consistent with a 

previous report; [  55  ]  however, in our case, ZnS is hexagonal 

not cubic. The solid solution nanorod composition of hex-

agonal ZnS and tetragonal AgInS 2  was further confi rmed by 

transmission electron microscopy (TEM; Figure  1 b,c). The low 

magnifi cation TEM images of pure ZnS and AgInS 2  samples 

synthesized under the same reaction conditions as AgInS 2 -

ZnS solid solutions reveal that both the pure ZnS and AgInS 2  

are irregular, well-dispersed nanoparticles. The inset of Figure 

 1 b shows a typical TEM image of a single ZnS nanoparticle. 

We can identify two lattice fringes with spacing of 0.226 and 

0.191 nm, which are very close to the inter-plane spacing of 

(102) and (110) planes, respectively, calculated from XRD 

data. Similarly, the two lattice fringes with spacings of 0.133 

and 0.145 nm in the single AgInS 2  nanoparticle were observed, 

which are close to the inter-plane spacings of (332) and (400) 

planes, respectively (inset of Figure  1 c). The corresponding 

fast Fourier transform (FFT) analysis of the pure AgInS 2  and 

ZnS nanoparticles also supports the above conclusion.  

 The representative low-magnifi cation TEM image of the 

AgInS 2 -ZnS solid solution nanorods is shown in  Figure    2  a. 

We can see that the nanorods exhibit high aspect ratio with 

noncentrosymmetric geometry and the distribution of 

nanorod lengths is relatively narrow. Aided by a statistical 

analysis of 200 nanorods, we determined the average length 

of nanorods to be 32 nm, with a standard deviation of  ± 5 nm, 
einheim small 2013, 9, No. 16, 2689–2695
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     Figure  2 .     (a) TEM image of as-prepared AgInS 2 -ZnS solid solution nanorods (x  =  0.65) at low 
magnifi cation and (b) length distributions of the solid solution nanorods. The inset in (b) 
is the photograph of AgInS 2 -ZnS nanorods dispersed in chloroform solution, which forms a 
homogeneous, transparent suspension.  
as shown in Figure  2 b. The inset of Figure  2 b shows that the 

resulting AgInS 2 -ZnS solid solution nanorods can be well 

dispersed in chloroform to form homogeneous, transparent 

suspensions.  

 To investigate the structure of AgInS 2 -ZnS solid solu-

tion nanorods, we analyzed an individual nanorod. The high-

resolution TEM (HRTEM) image of the individual solid 

solution nanorod in  Figure    3  a revealed that the interplanar 

distance was 0.331 nm, which was close to the interplanar 

distance of the (010) plane of the bulk hexagonal structure 

of ZnS. It can be observed that the nanorods grew along the 

[100] orientation of ZnS as marked with an arrow shown in 

Figure  3 a, which was also consistent with the FFT analysis of 

the nanorod (in the inset of Figure  3 a). However, it is noticed 
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

     Figure  3 .     (a) Contrast-enhanced Fourier-fi ltered HRTEM images, (b) STEM image, and (c,d) 
EDS analysis of a single AgInS 2 -ZnS solid solution nanorod (x  =  0.65) at positions A and 
B, respectively. The inset in (a) is the FFT pattern of original HRTEM image along the [001] 
zone axis. The insets in (b) and (c) are the schemes of crystal structures of solid solutions. 
The green dots represent Zn element, the red dots represent Ag element, and the blue dots 
represent In element.  
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that the crystal lattice pattern at the 

nanorod’s larger end is not very clear. To 

fully understand the difference, we further 

analyzed the components at the two ends 

of the nanorod. The scanning transmis-

sion electron microscopy (STEM) image 

in Figure  3 b shows an outline of the cor-

responding nanorod. The energy-disper-

sive X-ray spectroscopy (EDS) spectra in 

Figure  3 c,d were taken from the two ends 

(Point A and Point B) of the nanorod. 

Although both of the two EDS spectra 

indicated the presence of Ag, In, Zn, and S 

elements in the sample, the ratio of AgInS 2  

to ZnS was larger at Point A (Ag:In:Zn  =  

1:1:0.68) than that at Point B (Ag:In:Zn  =  

1:1:1.82), suggesting that the solid solution 

nanorods possessed a graded composition 
along their length. The higher AgInS 2  fraction at the larger 

end of the nanorod inferred the faster growth rate of AgInS 2  

compared to ZnS. The observation is also supported by recent 

studies showing that the melting point of materials may infl u-

ence their growth rate in solution to a certain extent and the 

materials with lower melting point tend to have faster growth 

rate. [  58  ]  In our case, this is consistent with the melting point of 

tetragonal AgInS 2  (880  ±  10  ° C) is lower than that of wurtzite 

ZnS (1700  ° C). During synthesis, in the beginning of the 

decomposition of (AgIn) x Zn 2(1-x) (S 2 CN(C 2 H 5 ) 2 ) 4 , due to the 

faster growth rate of AgInS 2 , more AgInS 2  formed than ZnS 

in the nanorod heads. This facilitated AgInS 2  not only to be 

substituted for ZnS on regular sites (substitutional) but also 

to take up spaces between regular sites (interstitial). As the 
growth of nanorods proceeded, the source 

of AgInS 2  would reduce dramatically 

while that of ZnS still maintained high 

concentration because of the relatively 

slow growth rate of ZnS, which increased 

ZnS fraction in solid solution nanorods, 

allowing AgInS 2  primarily to substitute 

for ZnS on their regular sites (inset of 

Figure  3 d).  

 To reveal the formation mechanism 

of AgInS 2 -ZnS solid solution nanorods, 

time-dependent morphological evolution 

experiments were performed by inter-

cepting intermediate products in different 

reaction stages of 7, 12, 21, and 30 min. 

The resulting solid products were puri-

fi ed and imaged using TEM, as shown 

in  Figure    4  a-d. At the initial stage, the 

decomposition of (AgIn) x Zn 2(1-x) (DDTC) 

(x  =  0.65) at 200  ° C quickly produced a 

large amount of AgInS 2 -ZnS solid solu-

tion nuclei with high AgInS 2  fraction 

owing to the faster growth rate of AgInS 2  

than ZnS. Subsequently, homogeneous 

AgInS 2 -rich nanocrystals (nanorod heads) 

with an average diameter of 7 nm were 

obtained, serving as the starting seeds 
2691www.small-journal.com
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     Figure  4 .     TEM images of AgInS 2 -ZnS solid solution nanorods (x  =  0.65). The synthesis times 
are a) 7 min, b) 12 min, c) 21 min, and d) 30 min. e) Schematic of the proposed mechanism 
for AgInS 2 -ZnS solid solution nanorods.  
(Figure  4 a). Notably, these AgInS 2 -rich nanorod heads are 

also solid solution maintaining the hexagonal structure of 

ZnS. At the second stage, a small amount of short nanorods 

with thin tails appeared at 12 min (Figure  4 b). The elonga-

tion process of solid solution nanorods could be attributed to 

the heterogeneous nucleation of ZnS-rich solid solution tails 

depositing on the surface AgInS 2 -rich solid solution seeds 

along the [100] direction. By the third stage, more nanorods 

emerged with only a small portion of nanoparticles remaining 

at 21 min (Figure  4 c). Finally, the TEM image in Figure  4 d 

revealed that the end product contained a large quantity of 

uniform nanorods with an average length of 32 nm. Based on 

the above TEM results together with the analysis of single 

nanorods, we proposed an anisotropic growth mechanism 

with different steps as depicted in Figure  4 e: (1) fast nuclea-

tion and formation of AgInS 2 -rich nanorod heads serving 

as the starting seeds, (2) heterogeneous nucleation and 

slow growth of a ZnS-rich thin tail on the seed surface, and 
www.small-journal.com © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, 

     Figure  5 .     TEM images of as-prepared AgInS 2 -ZnS solid solutions with a series of chemical 
compositions. The value of x in (AgIn) x Zn 2(1-x) (S 2 CN(C 2 H 5 ) 2 ) 4  used as a precursor is indicated 
in the fi gure.  
(3) short nanorods further growing into 

longer nanorods. A similar growth mecha-

nism on the synthesis of heterostructured 

CdS/CdSe nanorods with a certain degree 

of alloying has been recently reported by 

Vela et al. [  58  ]   

 It is worth mentioning that the forma-

tion of nanorods strongly depends on the 

chemical composition of the AgInS 2 -ZnS 

solid solutions. From the TEM images in 

 Figure    5  , it can be seen that the uniform 

nanorods can only be obtained when 

AgInS 2 -ZnS solid solutions have appro-

priate compositions when the value of 

x is between 0.55 and 0.65 and the cor-

responding mole fraction of AgInS 2  in 

solid solution nanorods is approximately 

38–48%.  

 The UV-vis absorption spectrum 

of the resulting AgInS 2 -ZnS solid solu-

tion nanorods shows intense absorption 
bands with steep edges in the visible region and the onset 

of absorption edge was observed between those of ZnS and 

AgInS 2 . The band gap of the solid solution nanorods is esti-

mated to be 1.90 eV from the onset of the absorption edge. 

Furthermore, the photoluminescence spectrum (PL) of the 

AgInS 2 -ZnS solid solution nanorods was measured at room 

temperature ( Figure    6  b). Compared to pure AgInS 2  and ZnS 

nanoparticles, a strong emission band centered at 680 nm can 

be observed from AgInS 2 -ZnS solid solution nanorods (by 

465 nm excitation), while there is almost no or weak emission 

from pure AgInS 2  or ZnS nanoparticles in the range exam-

ined. The onset of excitation spectrum is located at almost 

the same position as that of the corresponding absorption 

spectrum, which indicates that the emission of the AgInS 2 -

ZnS solid solution nanorods results from band gap excita-

tion (Figure  6 c). The inset shows an eye-visible photograph 

of the strong red photoluminescence from the solid solution 

nanorods excited under blue irradiation from a 465 nm lamp.  
 For the AgInS 2 -ZnS solid solution 

nanorods, the optical properties have been 

found to be infl uenced by their composi-

tion. As shown in  Figure    7  , the absorption 

and emission spectra are both blue-shifted 

as the mole fraction of ZnS increases. The 

peak wavelength of PL was blue-shifted 

from 700 to 650 nm with decreasing  x  as 

shown in Figure  7 b. The corresponding 

shift in the absorption spectra shown in 

Figure  7 a was also observed here (it can 

be noted that the wavelength of optical 

absorption onset was not clearly identi-

fi ed when the mole fraction (x) of AgInS 2  

in solid solution nanorods was less than 

0.65). These observations show that the 

AgInS 2 -ZnS solid solution nanorods are 

promising optical nanomaterials in which 

the energy band structure can be conveni-

ently tuned. In addition, it is found that the 
Weinheim small 2013, 9, No. 16, 2689–2695
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     Figure  6 .     UV-vis absorption spectra (a) and photoluminescence spectra (b) of the AgInS 2 -ZnS solid solution nanorods, AgInS 2  and ZnS nanoparticles 
synthesized at the same condition. The inset of Figure b shows an eye-visible photograph of the red photoluminescence from the AgInS 2 -ZnS solid 
solution nanorods excited under blue irradiation using a 465 nm lamp. (c) UV-vis absorption spectra and photoluminescence excitation (PLE) of 
the AgInS 2 -ZnS solid solution nanorods.  
AgInS 2 -ZnS solid solutions with uniform nanorod structure 

(for x  =  0.55–0.65) yield much stronger luminescence. The 

maximum quantum yield (QY) value of these AgInS 2 -ZnS 

solid solutions is 32.5%, which is better than that reported 

previously. [  55  ]  Also, the PL intensity of as-prepared AgInS 2 -

ZnS nanorod solution is almost constant for at least 3 months 

when stored under N 2  atmosphere.  

 In summary, we have demonstrated an effi cient approach 

to synthesize soluble, narrowly dispersed AgInS 2 -ZnS solid 

solution nanorods. This is the fi rst demonstration of oriented 

growth for semiconductor solid solution nanorods via a one-

pot solvothermal method. This anisotropic growth of AgInS 2 -

ZnS solid solution nanorods can be attributed to the different 

growth rates of their components (where the growth rate of 

AgInS 2  is much faster than ZnS). As a result, the AgInS 2 -rich 
© 2013 Wiley-VCH Verlag Gmb

     Figure  7 .     Absorption spectra (a) and normalized PL spectra (b) of AgInS 2 -
prepared by decomposition of (AgIn) x Zn 2(1-x) (S 2 CN(C 2 H 5 ) 2 ) 4 . The value of x
fi gure.  

small 2013, 9, No. 16, 2689–2695
solid solution head segment is formed fi rst, serving as the 

starting seeds. Over time, ZnS-rich thin tails slowly grow on 

the nanorod heads, forming the thin tail segments along the 

[100] direction. The morphology of the resulting AgInS 2 -ZnS 

solid solutions strongly depends on their chemical composi-

tion and uniform solid solution nanorods are only obtained 

when the mole fraction of AgInS 2  in the solid solution 

nanorods is between 38 and 48%. The resulting nanorods 

exhibit high QY levels and tunable color, suggesting sig-

nifi cant potential for lighting, biolabeling, and visible-light-

driven photocatalyst applications. These results provide an 

effi cient and convenient way to directly synthesize func-

tional semiconductor solid solution nanorods. Although this 

study concerns the AgInS 2 -ZnS system, we believe that this 

strategy can also be extended to other solid solution systems.  
H & Co. KGaA, Weinhei

ZnS solid solutions 
 is indicated in the 
 Experimental Section 

  Chemicals : Oleic acid (OA; 90%, 
Aldrich), Octadecylamine (ODA; 90%, 
Aldrich), 1-Octadecene (ODE; 90%, Aldrich), 
(C 2 H 5 ) 2 NCS 2 Na · 3H 2 O ((Na(DDTC); ACS rea-
gent, Sigma-Aldrich), AgNO 3  (99.9 + %, Alfa 
Aesar), In(NO 3 ) 3  (99.9%, Aldrich), Zn(NO 3 ) 2  
(99%, Sinopharm Chemical Reagent Co., Ltd), 
ethanol (AR), chloroform (AR). All chemicals 
were used as received without further purifi ca-
tion. The AgInS 2 -ZnS solid solution nanorods 
were synthesized by using standard air-free 
procedures.  

 Synthesis of Monodisperse AgInS 2 -ZnS 
Nanorods : A typical procedure is given as 
follows: 50 mg of (AgIn) x Zn 2(1-x) (DDTC) was 
added into the solvent made of 10 mmol of 
OA, 10 mmol of ODA, and 20 mmol of ODE in 
a three-necked fl ask (50 mL) at room tempera-
ture. Subsequently, the slurry was heated to 
2693www.small-journal.comm
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100  ° C to remove water and oxygen with vigorous magnetic stir-
ring under vacuum for several minutes in a temperature-controlled 
electromantle to form an optically transparent solution. The solu-
tion was then heated to 200  ° C at a heating rate of 15  ° C/min and 
kept for 30 min under Ar atmosphere. After cooling down to room 
temperature, the solid solution nanorods were precipitated by 
adding an excess amount of the absolute ethanol into the reacted 
solution, followed by washing with ethanol and drying in oven at 
80  ° C. The resulting nanorods were easily re-dispersed in various 
nonpolar organic solvents (e.g., chloroform). The yield of nanorods 
was about 68–80%. The precursor (AgIn)  x  Zn 2(1−   x   )( S 2 CN(C 2 H 5 ) 2 ) 4  
was prepared using the method introduced in ref  [  55  ] .  

 Instrumentation : The powder X-ray diffraction (XRD) patterns 
of the as-prepared products were recorded on a Shimadzu 6000 
X-ray diffractometer equipped with Cu K α  radiation ( λ   =  1.5405 Å). 
Samples for transmission electron microscopy (TEM) and scanning 
transmission electron microscopy (STEM) analyses were prepared 
by drying a drop of nanorod dispersion in chloroform on amor-
phous carbon-coated copper grids. High-resolution TEM (HRTEM) 
characterization was performed with a transmission electron 
microscope (JEOL, JEM-2010) operating at 200 kV. STEM meas-
urements were performed using an FEI Titan STEM, with Schottky 
Field Emission Gun (FEG), operated at 200 kV. EDX spectra were 
acquired in STEM mode using a probe size of around 1 nm, with 
an acquisition time of 20 s, while scanning the STEM probe over 
a small area of around 4 nm by 4 nm, to minimize damage to the 
material during EDX acquisition. The photoluminescence (PL) and 
photoluminescence excitation (PLE) spectra were recorded in the 
spectral range of 350–850 nm at room temperature using a 450 W 
xenon lamp as the excitation source. The absorption spectra were 
obtained over a wavelength range from 300 to 800 nm using a 
UV-vis spectrophotometer (Shimadzu) with a 50 W halogen lamp 
and a deuterium lamp as the excitation source. The PL QY of 
AgInS 2 -ZnS nanorods was measured by comparing the integrated 
area of photoluminescence emission of rhodamine 6G in ethanol 
(QY  =  95%) with AgInS 2 -ZnS nanorods in chloroform, with the 
same absorbance value at the excitation wavelength and similar 
fl uorescence wavelength.  
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