
fMRI Basics: Single subject analysis using the general linear model
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Human Brain Function (2nd ed)
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General Linear Model

GLM models observed data (dependent variable) as a linear combination 

of predictor variables (independent variables, covariates etc)

For i observations modeled using  j predictor variables:

yi = β1 xi1 + β2 xi2 + β3 xi3 + … xij βj + εi

yi Observation i

Xij Value i for predictor variable j

βj Parameter estimate for predictor variable j

εi Error for observation i

• Linear refers to the additive relationship between the different weighted 

predictor variables. These predictor variables themselves can be

anything, including non-linear functions of more basic predictors.



General Linear Model

• Many statistical techniques are special cases of the GLM – e.g. ANOVA, 

ANCOVA, t-test, multiple regression (and also MANOVA, LDA and 

canonical correlation in multivariate analyses)

• ANOVA asks whether different experimental conditions (X1, X2, etc) 

are associated with different scores

• Multiple regression asks whether scores are related to predictor

variables (X1, X2, etc) 

• Both are essentially doing the same thing – asking whether there is a 

relationship between a dependent variable and one or more independent 

variables  

• Parameter estimates also called Beta values (= treatment effects in 

ANOVA, or the slope of the regression line)

• Measure of the strength of relationship between a predictor and the 

observed data (taking into account all the other predictors in the model)



General Linear Model

A full experiment:
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This can be interpreted as a system of simultaneous equations that we 

wish to solve for the unknowns β1…j



General Linear Model

In matrix form:

X = “Design Matrix” = the statistical model of the data

ββββ = vector of j parameter estimates
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Design Matrix

• A numerical description of known sources of variance in the experiment -

information about stimulus conditions, covariates etc. 

• Can also be represented graphically.

• E.g. 1 way ANOVA with 3 levels:
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Design Matrix

• E.g. multiple regression with 2 continuous predictor variables:
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Design Matrix

• Extremely flexible, accommodates many types of predictor variables:

• ANCOVA is simply an ANOVA-like design matrix with additional 

columns for covariates 

• Can easily model interactions between ANOVA-esqe categorical 

predictors and covariates 

• Can model functions of predictor variables – e.g. could include 

powers of predictor variables to get a polynomial expansion

• Can include both experimentally manipulated variables and nuisance 

variables of no interest – any known source of variance that you want to 

model



Estimating the parameters

• How to determine the beta values?

• Generally have more observations than predictors, which means the 

design is over-determined – there’s no unique solution
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Estimating the parameters

• Want to find the set that are “best” in 

some way

• The most common definition is to 

find the beta values that minimise the 

sum of squared residuals (error 

terms, unexplained variance) – i.e. 

the difference between observed and 

predicted values

• Ordinary Least Squares (OLS)

0

2

4

6

8

10

12

0 5 10

Observed

Predicted

εi

yi

βj

OLS estimate: ββββ = (XTX)-1XY

Predicted data: Y=Xββββ

Residuals: Ε = Y-Y

^

^
0

1

2

3

4

5

6

7

8

9

0 1 2 3

Observed

Predicted

βj

yi
εi



Estimating the parameters

• Main caveat is that the inverse is not defined for 

rank deficient matrix

• Rank = number of linearly independent columns

• If one column (or set of columns) is a linear 

combination of another column (or set of 

columns), the matrix is rank deficient

• Have to solve with additional constraints

• Moore-Penrose pseudoinverse – solves for 

minimum Σβ2 (L2 minimum norm)

• This limits the statistical comparisons that can 

be performed

x3x1 x2 µµµµ

x1  +  x2  + x3  =  µµµµ

• Correlations between design matrix columns produce inefficient estimation

� β values represent partial correlations between predictor and the observed 
data

• i.e. they represent the unique contribution of each predictor to explaining the 

observed data



Application to fMRI data

Most common approach is 

mass univariate

Model estimated for each 

voxel independently

Y is a vector of values 

showing BOLD signal 

strength at a single voxel in 

successive scans (a voxel 

time-series)

Output is one beta value for 

each predictor in the model

Iterate over all voxels to build 

up a series of beta images, 

one beta image for each 

predictor in the model
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Application to fMRI data

One complication in fMRI is that the BOLD signal responds slowly and is 

temporally extended

Peak response is 4-6 seconds after stimulus presentation

Simply putting 1’s in the design matrix rows corresponding to stimulus 

presentation can miss considerable amounts of variance in the signal
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Application to fMRI data

How to create a design matrix 

with predictor functions that 

capture this variability?

Fortunately, the BOLD response 

shows a stereotyped pattern of 

response (especially in primary 

sensory areas)

Canonical Haemodynamic 

Response Function

Create a function representing 

stimulus presentation, then 

convolve it with the Href function

Href used as a basis function (i.e. 

a simple function used to 

describe the response space of a 

more complex function, in this 

case the complex time course)

4-6 s

20-30 s



Convolved regressors

X =

X =

Event related

Block design (epochs)

ββββ

ββββ



Convolved regressors

* ββββ +=

Beta values can be thought of as scaling the regression function to give the 

best fit to the data 



Other basis sets

Canonical

Temporal

Dispersion

Canonical Href on its own does a 

reasonable job, but it’s inflexible (only 

1df), and won’t capture differences in 

shape or timing of BOLD signal

In practice, can use any basis function 

you want, including sets of multiple 

basis functions

Adding temporal and dispersion 

derivatives to Href allows for flexibility 

in modelling latency and shape of 

response

Finite Impulse Response (FIR) – series 

of mini-boxcars, each modelling a 

discrete time-bin (similar to selective 

averaging)

End up with 1 column (and one beta 

image) per basis function per predictor



The Design Matrix Revisited

Parameters
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a
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Session 1

Session 2

Session 3

Movement parameters (covariates)

Experimental conditions (convolved regressors)

Session mean columns

When this design is estimated, 

SPM will output one beta image 

for each column and a single 

image showing the error for the 

whole model (ResMS.img)

The error image contains the 

mean squared residuals for 

each voxel, i.e.

Σ(Y-Y)2/df^



Contrasts

After the model parameters have been estimated, specific hypotheses are 

tested using t or F statistics.

Calculate these using contrasts - weighted combinations of beta values.

A contrast vector defines how to weight each column of the design matrix

E.g. to find areas more active in condition 1 

than condition 2, use the contrast [1 -1 0]

If c is a row vector of contrast weights, and β
is a row vector of beta values,

Contrast = cβ’

3.5
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1 -1 0

β =β =β =β =

c ====

1 -1 0 * = 4.2 – 0.6 = 3.6



Contrasts

Comparisons between conditions can take any form as long as the contrast 

vector sums to zero: 

• [2 -1 -1] = areas more active during condition 1 than conditions 2 and 3

• [-3 -1 1 3] = areas showing a linear increase over 4 conditions

For a 2x2 factorial design with factors A and B, if the design matrix columns 

correspond to A1B1, A1B2, A2B1,A2B2 then:

• [1 1 -1 -1] = main effect of A

• [1 -1 1 -1] = main effect of B

• [1 -1 -1 1] = interaction

Conditions can also be compared to an unmodelled baseline – e.g. to find 

areas that are active during condition 1, use the contrast [1 0 0]



t-contrasts

T contrasts contain a single row (single degree of freedom)

Directional, so [1 -1 0] shows where c1>c2, but [-1 1 0] shows where 

c2>c1.

A t-statistic is obtained by dividing the contrast value by the standard error 

of the contrast:

t = cβ’/se(cβ’)

Standard error of (cβ’) can be estimated using √(σ2*c*(X’*X)-1*c’)

Where σ2= mean squared error = Σ(Y-Y)2/df

H0: cβ = 0

Running a t-contrast creates one image containing the calculated contrast 

values (con*.img) and one image containing the calculated t-statistics 

(spmT*.img)

^



F-contrasts

F contrasts can contain more than one row 

Non-directional – test for any differences between conditions (+ve or –ve)

Additional rows can be thought of as adding a logical OR to the contrast e.g:

[1 -1 0;

0 1 -1]

= Where is condition 1 greater than condition 2 OR condition 2 greater than 

condition 3

[1 0 0;

0 1 0]

= Where is condition 1 greater than baseline OR condition 2 greater than 

baseline



F-contrasts

F statistics represent the ratio of variance explained by a model that 

includes the effects of interest (the full model) and a model that doesn’t (the 

reduced model) – i.e. they’re asking how much additional variance is 

explained by modelling the effects of interest.

Running F contrasts creates an ess*.img (Extra Sum of Squares) and an 

spmF*.img
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c =

Reduced Model 

X0
X1 (ββββ3-9)X0

Full Model

e.g. do any of the movement parameters explain 

any variance in the data?



F-contrasts

First 3 columns in each session represent the levels of a single factor:

00000000-110000000-110

000000000-110000000-11

00000000-12-1000000-12-1

000000002-1-10000002-1-1

00000000-1-12000000-1-12

Main effect of 

factor:

Or:



Statistical Inference

Thresholded at p = 0.05

Statistic images evaluated by applying a threshold, 

and observing the spatial distribution of statistics 

that survive the threshold.

But there’s a massive issue with multiple 

comparisons. Testing 100,000 voxels at p<0.05 

means that on average, 5000 will be “significant” by 

chance (false positives, or “type I” errors)

Need to correct somehow for multiple comparisons

Bonferroni correction:

p(corrected) = p(uncorrected)/n comparisons

This is only appropriate when the n tests 

independent. SPMs are smooth, meaning that 

nearby voxels are correlated, making Bonferroni

overly conservative in fMRI.

Random noise…



Statistical Inference

SPM uses the “Theory of Random Fields” to calculate an estimate of the true 

number of independent comparisons.

This depends greatly on the smoothness of the data (smoother data = fewer 

independent comparisons)

Actual spatial resolution measured in “resels” (resolution elements).

As well as beta and error images, estimating an SPM design also outputs an 

image called RPV.img – this shows the “Resels per Voxel” (i.e. the 

smoothness of the data) at each voxel.

In the results interface, the FWE corrected (=Family Wise Error corrected) p 

value controls for multiple comparisons in a similar way to Bonferroni

correction, but using the number of resels rather than the number of voxels 

to adjust the p value.

Depending on the smoothness, 100,000 voxels ~ 500 resels.



Statistical Inference

Familywise Error Rate (FWER)

•Chance of any false positives

•Controlled by Bonferroni & Random Field Methods

False Discovery Rate (FDR)

•Proportion of false positives among rejected tests
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Statistical Inference



Statistical Inference

t > 0.5t > 3.5t > 5.5

High Threshold Med. Threshold Low Threshold

Good Specificity

Poor Power
(risk of false 

negatives)

Poor Specificity
(risk of false 

positives)

Good Power




