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A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser �a
laser with self-similar propagation of ultrashort pulses�, is used as a variational wave function to solve the
Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between
the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form
of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The
resulting ground-state density profile and energy are in very good agreement with both the analytical solutions
in the limiting cases of interaction and the numerical solutions in the intermediate regime.
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It is common for dynamical systems with weak coupling
to show Gaussian behavior with respect to key parameters,
whereas strongly coupled and highly nonlinear systems tend
to exhibit power law dependences. A striking recent example
of this is the ultrashort pulse formation in the similariton
laser �a laser with self-similar propagation of ultrashort
pulses� �1�. Another nonlinear system, which exhibits a para-
bolic density profile for strong interactions, is a trapped
Bose-Einstein condensate �BEC�. In Bose-Einstein conden-
sation, the density of the condensate is analogous to the in-
tensity of light in nonlinear optics �NLO� and the nonlinear
governing equation for this system, which is called the
Gross-Pitaevskii equation �GPE�, is very similar to the equa-
tion for propagation of laser light in a nonlinear optical me-
dium. Based on this similarity, it is natural to expect similar
solutions for these vastly different systems. Solitonlike and
self-similar solutions of the nonlinear Schrödinger equation
�NLSE� are important both in BEC and NLO.

Solitonlike solutions arise when the nonlinearity is com-
pensated by the dispersion and they are the only exact ana-
lytical solutions of these NLSE’s, whereas self-similar solu-
tions are asymptotic solutions that show up when the effects
of initial conditions die out but the system is still far from the
final state �2�. Although soliton-type solutions have been ex-
tensively studied in both the NLO and BEC communities,
self-similar solutions are not as comprehensively investi-
gated. In optics, these types of solutions are used more ex-
tensively from Raman scattering to pulse propagation in fi-
bers, and it is shown that linearly chirped parabolic pulses
are exact asymptotic solutions of the NLSE with gain �3�.
Recently, we have demonstrated experimentally and numeri-
cally that self-similar propagation of ultrashort parabolic
pulses �similaritons� are stable in a laser resonator �1�. More
recently, we have developed a semianalytic theory of the
similariton laser �4,5�. Instrumental in this step was the in-
troduction of an ansatz to describe the intensity profile of this
pulse, which can be “tuned” to any condition, ranging from
weakly nonlinear �Gaussian pulses� to strongly nonlinear
�parabolic pulses�. Here, motivated by the mathematical
similarity between the two systems, we apply the same an-
satz to describe the density profile of a BEC in a quadratic
trap. We show that this ansatz describes the system with
excellent accuracy, in the whole range from the noninteract-
ing limit to the strongly interacting limit.

Gross-Pitaevskii theory �6� gives a very successful de-
scription of the ground state and excitations of BEC’s in
dilute atomic gases. The success of this theory implies that
the condensate can be described accurately with a single
wave function and the interactions between the particles are
through s-wave scatterings. The interaction of the particles
are then represented by the interaction strength g= 4��2a

m ,
where a is the s-wave scattering length and m is the mass of
the trapped particles. The theory reduces to a single equation
that describes the condensate wave function, known as the
GPE, a type of nonlinear Schrödinger equation which arises
in many areas of physics like NLO and hydrodynamic theory
of fluids.

The GPE can be obtained by minimizing the ground-state
energy functional of the condensate,

E��� =� dr� �2

2m
����r��2 + V�r����r��2 +

g

2
���r��4� , �1�

with respect to the wave function. The terms in the energy
functional correspond to kinetic, trapping, and interaction en-
ergies, respectively. The trapping potential can generally be
approximated with a harmonic potential for many of the ex-
periments. The time-independent GPE follows as

−
�2

2m
�2��r� + V�r���r� + g���r��2��r� = ���r� , �2�

where � is chemical potential introduced as the Lagrange
multiplier for the normalization constraint 	dr n�r�=N,
where n�r�= ���r��2 is the density of the condensate.

The nonlinearity of the GPE is due to an interaction be-
tween particles and its effect becomes more pronounced as
the number of particles in the condensate increases which is
the case for current experiments where more than 107 par-
ticles form the BEC. Since very few exact solutions of the
NLSE, such as solitons, are known, many numerical algo-
rithms �7–11� and variational methods �12–17� are developed
to find ground-state solutions. Although variational methods
give only an upper bound to the ground-state energy, they
require less calculation and can give accurate results if a
suitable trial function is chosen. Another advantage of the
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variational principle is that it gives the functional form of the
wave function which can be used to obtain other properties
of the condensate.

Therefore, many trial functions are proposed to obtain a
lower bound for the ground-state energy. Trial functions are
generally chosen by adding parameters to a known approxi-
mate analytical solution. The trivial approximate solutions
are obtained by looking at the limiting cases of the GPE
where the nonlinearity is negligibly small or very high. As-
suming an ideal Bose gas, Eq. �2� reduces to the Schrödinger
equation where the chemical potential corresponds to the en-
ergy eigenvalue, by neglecting the nonlinear term. With a
harmonic trap the problem turns into a harmonic oscillator
problem where the solution is a Gaussian. For the opposite
case where nonlinearity is dominant, the kinetic energy term
can be neglected in the GPE, and then the equation can eas-

ily be solved for the density, n�r�=
�−V�r�

2g , when the right-
hand side of the equation is positive. This approximation is
known as the Thomas-Fermi approximation �TFA�, and it
shows that as the interaction increases, the density profile
changes from a Gaussian to a parabola for a harmonic trap.
The TFA can be improved by adding the kinetic energy term
obtained with the resulting wave function with a suitable
cutoff �18� as

Ekin

N
= �15��−2/5�1

2
ln�480�� −

5

4
� . �3�

With this insight many trial functions are proposed for
isotropic traps and anisotropic traps with cylindrical symme-
try to describe the intermediate regime where neither the
TFA and nor the ideal gas approximation is valid. Here, we
make use of a simple analytic function which has already
been used in NLO where a similar behavior—Gaussian to
parabolic—for the intensity profile of a similariton laser.

The so-called similariton pulse in optics has a nearly para-
bolic intensity profile to reduce the effect of Kerr nonlinear-
ity. However, if the nonlinearity of the system is reduced, the
pulse assumes the well-known Gaussian shape of dispersion-
managed solitons. Therefore, the ansatz proposed in �4� to
describe these pulses has an adjustable profile between a
Gaussian and an inverted parabola:

Sn�x� = exp�− 

k=1

n
x2k

k
� . �4�

This function becomes a Gaussian when n=1,

Sn=1�x� = exp�− x2� , �5�

and turns into an inverted parabola when n goes to � since
the summation in the exponent converges to ln�1−x2� for
�x � �1,

Sn→� = exp�− 

k=1

�
x2k

k
� = exp�ln�1 − x2�� = 1 − x2. �6�

Moreover, the expansion converges so quickly that adding
about ten terms is enough to get a parabolic profile with
smooth ends. Besides, this function is easily integrable
which makes it a good candidate for variational calculations.

Motivated by these properties, we use the similariton an-
satz, Eq. �4�, as our trial wave function to minimize the en-
ergy functional given in Eq. �1�. To simplify the calculations,
we non-dimensionalize the Gross-Pitaevskii functional by
scaling length, energy, and wave function with oscillator
length a�=� �

m� , ��, and �N /a�
3 , respectively �see Table I�.

We first analyze the solution for a spherical harmonic trap
V�r�= 1

2m�2r2 and introduce the parameter ��Na /a� which
is a measure of the strength of the interaction. With this
rescaling the energy functional becomes

E���
N

= 2��
0

�

d3r�����r��2 + V�r����r��2 + 2�����r��4� .

�7�

Ideally � can take any value between −� to � since all the
parameters are experimentally tunable. However, a negative
scattering length, which means an attractive interaction,

TABLE I. The values of the wave function at the center, the
root-mean-square sizes rrms, and chemical potentials are tabulated
in units of �N /aw

3 , aw, and ��, respectively. For comparison nu-
merical results of Ref. �11� are given in parentheses.

� ��0� rrms �

0 0.4238 �0.4238� 1.2248 �1.2248� 1.5000 �1.5000�
0.2496 0.3969 �0.3843� 1.2794 �1.2785� 1.6805 �1.6774�
0.9986 0.3475 �0.3180� 1.3981 �1.3921� 2.0885 �2.0650�
2.4964 0.2515 �0.2581� 1.5355 �1.5356� 2.5803 �2.5861�
9.9857 0.1739 �0.1738� 1.8822 �1.8821� 4.0089 �4.0141�
49.926 0.1097 �0.1066� 2.5071 �2.5057� 7.2576 �7.2484�
249.64 0.0665 �0.0655� 3.4152 �3.4145� 13.559 �13.553�
2496.4 0.0330 �0.0328� 5.3855 �5.3852� 33.812 �33.810�
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FIG. 1. �Color online� Ground-state energy with respect to the
interaction parameter � obtained with the variational function
�black solid line�. The resulting energy of a Gaussian variational
function is given by dotted �red� line and energy obtained with
Thomas-Fermi solution is given with dashed line �green�. Improved
Thomas-Fermi solution �18� is given by the dotted line �blue�. En-
ergy per particle is given in units of ��. The inset is given for small
� values.
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causes collapse of the condensate when the particle number
is high. In this regime, our results agree with �12�. In the
present work, we concentrate on repulsive interaction. With
proper normalization the trial wave function has the form

��r� =� 1

4�d3I
exp�


k=1

n
�r/d�2k

2k
� , �8�

where d and n are our variational parameters with
I=	0

�dr r2Sn�r� which is an integral that can be calculated
analytically for n=1,2 and numerically for n	2. Here the
parameter d is responsible for the width of the condensate,
which increases as the interaction increases, and n takes care
of flattening of the central density. We minimize the energy
with respect to d for different n values and chose the n that
gives the minimum energy. For d, we obtain a fifth-order
polynomial equation where only one of the roots is physi-
cally meaningful.

We compare our results with the analytical approxima-
tions as follows. For small � values, our trial function re-
duces to a Gaussian and gives an exact result for �=0, and
for large � our results agree well with the improved TFA

results as shown in Fig. 1. We also compare the resulting
wave function with the numerical solutions obtained by the
steepest descent method for different � values in Fig. 2. We
also tabulate our results and include the results of a recent
numerical analysis which minimizes the energy functional
directly by the finite-element method. Here it should be
noted that tabulated kinetic, trap, and interaction energies
satisfy the virial theorem 2Ekin+2Etr−3Eint=0, to our nu-
merical accuracy. It is also remarkable that even for large �
adding ten terms is enough to find a good approximation for
the wave function �see Fig. 3� which shows the simplicity of
the calculations.

Using similar trial functions, we can also solve the GPE
for a cylindrical trap and a fully anisotropic trap. For the
cylindrically symmetric trap, trial function takes the form,

��
,z� = C exp�− 

k=1

n
 �
/d
�2k

2k
�exp�− 


k=1

nz �z/dz�2k

2k
� , �9�

where C=� N
2�d


2dzI
Iz
, I
=	0

�
d
Sn�
�, and Iz=	−�
� dzSn�z�. We

have four variational parameters, but calculations are similar

TABLE II. Results of our calculation for a cylindrically harmonic trap with �=�8. Energy and length units are N�� and a�. The results
of the numerical calculation in Ref. �9� are given in parentheses for comparison except for the last row. For �=2165 the Thomas-Fermi result
for the chemical potential is given in parentheses.

� xrms zrms Ekin Etr Eint �

0.0000 0.7071 �0.707� 0.4204 �0.42� 1.2071 �1.207� 1.2071 �1.207� 0.0000 �0.000� 2.4142 �2.414�
0.4330 0.7901 �0.79� 0.4374 �0.44� 1.0539 �1.06� 1.3894 �1.39� 0.2237 �0.21� 2.8907 �2.88�
0.8660 0.8500 �0.85� 0.4472 �0.45� 0.9976 �0.98� 1.5225 �1.52� 0.3500 �0.36� 3.2200 �3.21�
2.1650 0.9657 �0.96� 0.4707 �0.47� 0.8528 �0.86� 1.8188 �1.81� 0.6440 �0.63� 3.9596 �3.94�
4.3300 1.0892 �1.08� 0.4966 �0.50� 0.7337 �0.76� 2.1730 �2.15� 0.9595 �0.96� 4.8258 �4.77�
8.6600 1.2319 �1.23� 0.5332 �0.53� 0.6709 �0.66� 2.6549 �2.64� 1.3227 �1.32� 5.9712 �5.93�
21.650 1.4798 �1.47� 0.5930 �0.59� 0.5314 �0.54� 3.5963 �3.57� 2.0432 �2.02� 8.2142 �8.14�
43.300 1.7038 �1.69� 0.6536 �0.65� 0.4351 �0.45� 4.6121 �4.57� 2.7847 �2.74� 10.616 �10.5�
64.950 1.8447 �1.84� 0.6989 �0.70� 0.4128 �0.41� 5.3569 �5.31� 3.2960 �3.26� 12.361 �12.2�
86.600 1.9562 �1.94� 0.7319 �0.73� 0.3789 �0.38� 5.9693 �5.91� 3.7270 �3.68� 13.802 �13.7�
2165 3.7367 1.3297 0.1459 21.035 13.926 49.033 �48.329�
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FIG. 2. �Color online� Wave function calculated with the steep-
est descent method �9� is shown as a bold line �blue� whereas the
similariton ansatz solution is given by the dashed line �red� for
�=100.
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FIG. 3. Change of variational parameters with interaction pa-
rameter � is given. Left plot shows the number of terms in the
summation and the right one shows the change of width of the
similariton ansatz in units of oscillator length a�.
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to the isotropic case. We compare our results with the nu-
merical results of Dalfovo and Stringari �9� in Table II. Cy-
lindrically symmetric traps are the most common traps in
BEC setups, and the aspect ratio obtained from

xrms

zrms
is very

important to identify the BEC phase in these experiments. It
is shown in �9,12� that for the noninteracting case this ratio is
equal to �� and goes to � in the Thomas-Fermi limit. This
result is clearly seen from the values in Table II where
�=�8, and it is also evident that convergence of the TFA is
very slow.

There are also experiments with fully anisotropic traps
�19�, and for this case the trial function can also be modified
similarly with six variation parameters. The results are given
in Table III, where agreement with the results in �10� is ap-
parent.

In summary, an ansatz is introduced to investigate the
ground-state properties of a BEC at zero temperature for
quadratic traps with arbitrary anisotropy. The ground-state
energy and wave function are found to be very accurate any-
where from the noninteracting case to the highly repulsive
one, as compared with numerical studies. The form of the
trial function changes from a Gaussian to a parabola
smoothly, and it successfully describes the intermediate re-
gime of moderate interaction. Important quantities like as-
pect ratio, chemical potential, and root-mean-square size of
the clouds are calculated and compared to numerical studies
�9–11�. With a slight modification the suggested form of the
wave function can be applied to vortex states of the conden-
sate. The time-dependent GPE can also be solved using a
similar form to study the growth dynamics.

We have shown previously that a nonlinear system in
optics—namely, a high-energy femtosecond laser
oscillator—exists stably between two extreme limits, corre-
sponding to Gaussian pulse profiles for weak nonlinearity
and parabolic profiles for strong nonlinearity. This indeed
appears to be a common behavior observed in many systems,
including the trapped BEC analyzed in this paper. We have a
simple analytical function, which has the crucial property of
interpolating any state between these extremes. In this paper,
we have shown that the variational approach with the same
ansatz yields excellent results for the BEC system in a qua-
dratic trap. We believe that our approach can be generally
applicable to other nonlinear systems in disparate fields.
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