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Frequency shifting with local nonlinearity management in
nonuniformly poled quadratic nonlinear materials
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We show theoretically that the frequency shifts that result from phase-mismatched cascaded processes
under conditions of strong group-velocity mismatch can be significantly enhanced by local control of the
nonlinearity with propagation. This control is possible with continuous variation of the poling period of
quasi-phase-matched structures and can allow one to avoid saturation of the frequency shift. We theoretically
demonstrate its applicability to high-quality, efficient frequency shifting of infrared pulses. © 2004 Optical
Society of America
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In recent years the nonlinear phase shifts that result
from cascaded interactions in quadratic [x �2�] nonlinear
media have received much attention as a route to large
nonlinear phase shifts of controllable magnitude and
sign.1 In particular, they have been shown to support
the generation of solitons2 and to compensate for Kerr
phase shifts3 and have proved useful for applications
such as mode locking of short-pulse lasers, pulse com-
pression,4 and nonlinearity management for high pulse
energies from fiber lasers.5

However, to date, applications of cascaded quadratic
phase shifts to femtosecond pulses have been in the
stationary limit, where the fundamental (FF) and the
second-harmonic (SH) fields overlap temporally de-
spite group-velocity mismatch (GVM) between them,
producing an effective Kerr nonlinearity in the limit
of large phase mismatch,6 i.e., providing a surrogate
for the bound-electronic cubic [x �3�] nonlinearity.

Recently, nonstationary cascaded phase shifts were
demonstrated.7 GVM retards or advances (depending
on its sign) the SH propagation with respect to the
FF. Consequently, the resulting nonlinear phase shift
imparted on the FF is advanced or delayed with respect
to the stationary phase by an amount depending on the
ratio of the GVM to the phase mismatch. This non-
instantaneous nonlinear response manifests spectrally
as redshifts or blueshifts of the pulse spectrum, which
produces an analog of nuclear (Raman) nonlinearities
from the quadratic process.7

In this Letter we propose a significant new degree of
freedom for nonstationary cascaded frequency shifts:
enhancement and control through local nonlinearity
management in quasi-phase-matched (QPM) quadratic
structures. Local nonlinearity control is achieved
by aperiodically varying the QPM domain reversal
period (to be discussed below). This added level of
control greatly increases the applications of cascaded
frequency shifts to frequency-shifting processes in the
infrared.

We begin by reviewing the origin of cascaded fre-
quency shifts.7 Within the slowly varying envelope
approximation, the coupled equations governing the
interaction of the FF (a1) and SH (a2) field envelopes
propagating in the z direction in a medium with
0146-9592/04/070763-03$15.00/0
quadratic nonlinearity under conditions of type I
second-harmonic generation (SHG) are8
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Here, time is normalized to the initial pulse duration,
t � t�t0, the propagation coordinate is j � z�LGVM,
and dj � LGVM�LDS, j with dispersion lengths LDS, j �
t0

2�GVD�vj � (where GVD is group-velocity disper-
sion). b � DkLGVM for Dk � k2v 2 2kv (the FF–SH
wave-vector mismatch), and LGVM � t0��n1,g 2 n2,g�
for material group-velocity index nj ,g with j � 1, 2.

In Refs. 7 and 9 it was shown that reducing Eqs. (1)
and (2) to a single f ield equation for the FF through
expansion in powers of b and keeping the lowest-order
correction from GVM yields

i
≠a1
≠j

2
d1

2
≠2a1
≠t2 2

1
b

µ
ja1j2a1| {z }

NLSE

1 2i
1
b

ja1j2
≠a1
≠t

∂
| {z }

Correction

� 0 ,

(3)

which consists of two parts: a standard nonlinear
Schrödinger equation and the next-higher-order cor-
rection, which is responsible for the noninstantaneous
phase shift that results from GVM in the nonstation-
ary limit. In Ref. 7 it was shown that the correction
qualitatively acts similarly to a Raman-scattering
term [of the form10 �TRa1≠ja1j2�≠t�]. In analogy to
Raman-scattering response time TR , we define an
effective response TR

eff � i�b for the cascaded process.
This effective cascaded response has two effects:

first, it is imaginary (unlike the Raman response),
so it alters the field envelope instead of contributing
directly to the phase. The envelope change couples
to the phase profile through the remaining terms
of Eq. (3), generating a Raman-like frequency shift
through a higher-order process. Second, the fre-
quency shifting saturates with 1�b � 1�Dk�l�: as
the pulse’s frequency shifts, Dk changes, eventually
© 2004 Optical Society of America
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saturating the shift. In bulk materials with birefrin-
gent phase matching, where the dependence of Dk on
l is f ixed, this saturation is unavoidable and limits
the maximum achievable frequency shift.

Consider instead QPM materials in which phase
matching is achieved through periodic reversal of the
nonlinear tensor element along the direction of propa-
gation. This allows precise control of Dk through
control of the local nonlinear domain reversal period
L. To date, researchers have used QPM structures
with constant L to achieve highly efficient SHG in the
visible and infrared frequencies11 and structures with
varying L�z� (so-called chirped structures) to control
the effects of dispersion in quadratic materials,12

resulting in compressed SHG output. In these works
the effects of grating chirp have been utilized for
linear effects in propagation and in the context of
phase-matched SHG.

We propose the use of continuously chirped QPM
structures for phase-mismatched SHG as a way to alter
the effective nonlinearity experienced by the pulse as
it propagates. This can be achieved with z-dependent
L, designed to control the effective Dk between the
FF and the SH, and hence the local nonlinearity.
Nonlinearity control is a new degree of freedom in
the design and optimization of nonlinear processes
in quadratic materials and has been considered for
switching applications13 and soliton formation.14,15

Here we show that continuous nonlinearity control
with chirped QPM gratings, combined with the ef-
fective Raman-like response described above, allows
highly accurate optimization and control of cascaded
frequency shifts. In QPM the net phase mismatch
is given by Dknet�l, z� � Dkmat�l� 2 2p�L�z�, where
Dkmat is the wavelength-dependent material phase
mismatch. Hence, a pulse propagating in a struc-
ture with L�z� designed to keep Dknet constant with
shifting FF wavelength will experience continued
frequency shift (analogous to real Raman-frequency
shift), avoiding saturation from the cascaded process.

Simulations of 100-fs, 0.6-mJ (15-GW�cm2) pulses
at 1550 nm propagating in chirped periodically poled
lithium niobate (C-PPLN, deff � 30 pm�V; see Ref. 16),
with and without chirp to optimize the nonlinear fre-
quency shift appear in Fig. 1. Equations (1) and (2)
are solved numerically with a symmetric split-step
beam propagation method.3 L is assumed to vary
linearly, i.e., linear chirped QPM is assumed.

Figure 1 shows enhanced effective Raman shifts
with period chirping. The resulting f ields, which
undergo continued shift with chirped poling, are the
qualitative analog of Raman solitons. These cascaded
Raman-like solitons provide a means of self-frequency
shifting f ixed frequency sources by many times their
bandwidth. Additionally, the process provides a way
to shift to lower wavelengths (i.e., the analog of anti-
Stokes Raman shifts). High spectral and temporal
quality can be achieved by removal of the unwanted
frequencies with an edge f ilter. Figure 2 shows a
100-fs, 0.12-mJ (15-GW�cm2) pulse at 1550 nm shifted
by .200 nm in a C-PPLN structure (from L � 38 mm
to 22 mm) with output quality factor 0.96 [Q, the
ratio of energy within the full width at half-maximum
(FWHM) of the pulse to that of the initial pulse]. As
with ordinary Raman solitons, the cascaded soliton is
temporally compressed, so its peak power is similar to
that of the launched pulse.

This processes should be applicable to other
wavelengths in the infrared, in particular, the tech-
nologically important 1030–1060-nm band, where
high-energy sources exist. The only practical limits
are that the wavelength must be suitable for material
poling and the material parameters must support
the shifting process (i.e., with short pulses, the
sign of the group-velocity dispersion determines the
direction of the shift, and the GVM cannot be too
large). The ability to generate large and eff icient
frequency shifts with a clean pulse output is of great
interest, since it presents an alternative to common
optical frequency-conversion schemes such as optical
parametric amplif ication but in a more compact and
simple implementation.

Fig. 1. Average spectral shift (in units of the initial
FWHM, �4.4 THz) with propagation. The dashed curve
shows the linear shift followed by saturation with constant
L. The solid (dashed–dotted) curve shows the shift with
chirped structure to optimize (hinder) the spectral shift.
Inset, input spectrum (rescaled, dashed–dotted curve)
and shifted spectra with (black) and without (gray) period
chirp.

Fig. 2. Spectra and (inset) temporal profile of the input
pulse (dashed–dotted) and shifted pulse before (gray
curve) and after (black curve) f iltering. Filtering reduces
the output pulse energy from 48% to 33% of that launched
but yields a pulse with Q � 0.96. The C-PPLN sample
length is 4.6 cm.
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Fig. 3. Frequency shift of 5-ps, 50-pJ pulses in wave-
guided C-PPLN. The dashed–dotted curves show the
input spectrum. The solid (dashed) curve shows the
downshift (upshift) with a grating chirp of 18.425 to
18.405 mm (18.36 to 18.38 mm), after filtering out the
unshifted frequency components. The waveguide dimen-
sions are 3 mm by 7 mm.

For C-PPLN in the infrared, the sign of group-
velocity dispersion is normal, preventing shifts to
longer wavelengths with short pulses (,�picoseconds).
However, with longer pulses (so dispersion is neg-
ligible) this restriction is lifted. This applies to
high-bit-rate telecommunications applications, where
the small modal area (and resulting high effective non-
linearity) available in waveguided periodically poled
lithium niobate can be used to generate frequency
shifts useful for wavelength-division multiplexing
applications. Figure 3 shows shifting of 5-ps, 50-pJ
pulses at 1550 nm in C-PPLN optimized for �1.5-nm
upshift and downshift (one wavelength-division mul-
tiplexing channel). The resulting upshifted (down-
shifted) pulse contains 29% (19%) of the launched
energy with Q of 0.94 (0.92).

Although the applications discussed above all per-
tain to tailoring L�z� for optimized frequency shift, it
should also be possible to modify the grating structure
to affect the temporal profile of the output pulse. This
could, for example, be used to maximize compression of
the frequency-shifted FF, yielding output with higher
peak power. Although it was not investigated here,
one could consider algorithms for local pulse optimiza-
tion, so that at any point in propagation the local struc-
ture is that needed to compress the f ield at that point
[i.e., with more advanced functional forms of L�z� than
the linear case considered here]. Although it is be-
yond the scope of this Letter, this prospect warrants
further study.

In conclusion, we have theoretically demonstrated
the use of local nonlinearity control by poling-period
variation in QPM quadratic interactions to optimize
frequency shifting. This new degree of freedom
increases the efficiency and quality of frequency shifts
from cascaded processes and completes the analogy
of cascaded frequency shifts to Raman-induced shifts
by allowing an effectively constant response time
for the cascaded process. As an example, we have
theoretically shown clean and eff icient frequency
shifting of submicrojoule, �100-fs pulses by hundreds
of nanometers, and we have shown the applicability of
this shifting to wavelength-division multiplexing chan-
nel switching with pulse parameters representative of
telecommunications systems in waveguided C-PPLN
structures. We expect quadratic frequency shifting,
enhanced with nonlinearity management, to have
broad applications. Furthermore, this new capability
can be easily customized and can be implemented with
existing fabrication techniques.
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