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Abstract

Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade,
driving the field of artificial tissue models towards a revolution in future medicine. Major progress has
been achieved through the development of innovative biomanufacturing strategies to pattern and
assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue
constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling
precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be
used to engineer artificial tissues and organs by producing scaffolds with controlled spatial
heterogeneity of physical properties, cellular composition, and ECM organization. This innovative
approach is increasingly utilized in biomedicine, and has potential to create artificial functional
constructs for drug screening and toxicology research, as well as tissue and organ transplantation.
Herein, we review the recent advances in bioprinting technologies and discuss current markets,
approaches, and biomedical applications. We also present current challenges and provide future

directions for bioprinting research.

1. Introduction

When the printing press was first introduced in the
15th century [1], it offered a high-throughput tool to
rapidly replicate and widely spread information at a
low cost. This approach broke the barriers to free-
thinking and gave access to massive amounts of
information enabling innovation at an unprecedented
rate [2, 3]. Although there have been other revolu-
tionary breakthroughs that enable information trans-
fer since then, the role of printing as a nucleating
invention is still significant. Analogously, bioprinting
can potentially enable a high-throughput and afford-
able tool to assemble cells, enabling complex tissue
constructs to become broadly available to many
researchers and scientists [2—4]. Bioprinting is the
process of patterning biological materials (e.g., cells,
biomaterials, and biomolecules) to fabricate tissue-
mimicking constructs using advanced additive manu-
facturing technologies [5—8]. During the bioprinting
process, biocompatible materials (i.e., bio-inks) are

used to facilitate the printing and act as matrices (i.e.,
bio-papers) for printed cells [5, 9, 10], which can then
be grown in perfusion vessels (i.e., bioreactors) for
further cellular and functional maturation.

As tissue engineering advances, innovative tools
targeting new biological and medical challenges are
becoming available. For instance, bioprinting has the
potential to create tissue constructs addressing the
needs for regenerative and transplantation medicine
[11]. Furthermore, bioprinting technologies enable
precise fabrication of three-dimensions (3D) hetero-
geneous functional units for regenerative and develop-
mental biology [12]. In addition, there is evidence that
bioprinting might lead to applications for precision
medicine mimicking the complexity of native tissues
[13, 14]. Translation of bio-inspired materials and
their applications in 3D bioprinting aims to yield cel-
lular and extracellular constituents of tissues by
mimicking specific functions and structures in cells
[15]. For instance, tissue engineering and regenerative
medicine promises to create new tissue constructs that

©2016 IOP Publishing Ltd
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address the need for model systems in drug screening
and precision medicine applications [16]. Therefore,
as the bioprinting technology arena progresses, more
biomedical applications are expected to emerge [15].

Ultimately, bioprinting technology will provide
inspiring solutions to address current challenges in tis-
sue engineering and regenerative medicine [17] by uti-
lizing basic science, materials science [18, 19], and
robotics [20-22]. Herein, we review the recent techno-
logical advances in biomanufacturing focusing on 3D
bioprinting platforms for tissue engineering and
regenerative medicine. We also highlight the current
market, approaches, and biomedical applications of
bioprinting as well as provide a future direction for
bioprinting research.

2. Bioprinting industry

3D bioprinting is experiencing a rapid transformation
from basic research in academic laboratories to an
emerging industry due to its potential commercial
value in broad fields including pharmaceutical dis-
covery, precision medicine, and tissue transplantation
[11, 23, 24]. The market size of 3D printing was
approximately $2.2 billion in 2012, and it is expected
to reach $10.8 billion by 2021 [25]. In 2014, there were
more than 30 companies worldwide having a business
directly related to 3D bioprinting and bioprinted
products. Products and services provided by these
companies are focused on 3D bioprinters and bio-
printed scaffolds. Over seven types of 3D bioprinters
are available in the market, which target research and
development (R&D) users in both academic institu-
tions and biotechnology/biomedical companies
(table 1). These bioprinters are mainly based on two
types of printing technologies: droplet and extrusion
bioprinting. Tissue Regeneration Systems provides
patient-customized solution to repair skeletal defects
and damages using bioprinted polycaprolactone
(PCL) scaffolds [26]. The Food and Drug Administra-
tion (FDA) has approved this solution in 2013 as the
first 3D bioprinted implant for skeletal reconstruction
and bone regeneration. In addition, Organovo
announced the exVive3D™ Liver in 2014 [27]. These
bioprinted human liver tissue mimics were main-
tained functionally and designed to provide drug
testing service to evaluate drug toxicity [28]. Although
it offers preclinical in vitro drug screening service, a
reliable, fully functional, and commercially available
liver tissue has not been achieved due to many
biological and technological challenges that need to be
overcome in the liver tissue engineering field [29]. 3D
bioprinting companies, their products, and current
projects are listed in table 2. Some bioprinting
companies also provide professional commercial soft-
wares (e.g., TSIM®, BioAssemblyBot®, and BioCAD®)
to design, draw, and print multiscale structures
ranging from cells to tissue constructs.
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3. State of art bioprinting technologies and
materials

3.1. Bioprinting strategies

The 3D printing of biological materials (i.e., cells,
growth factors, and hydrogels) is based on three major
strategies: laser [30-32], droplet [33-38], and extru-
sion [39-44] based bioprinting (figure 1). Each strategy
provides certain features that influence the printing
outcomes including cell viability and functionality
post-printing [2-5, 45]. In this section, we discuss in
more detail the mechanisms and parameters of
bioprinting techniques (table 3).

3.1.1. Droplet bioprinting

The droplet bioprinter (also referred as drop-by-drop
or drop-on-demand bioprinter) is one of the earliest
used printing methods in the field of tissue and organ
biofabriaction [46]. This approach utilizes a non-
contact reprographic strategy, where the droplet
encapsulated cells and nonliving materials are printed
and patterned layer-by-layer on a substrate [23, 47].
The droplet bioprinters can be divided according to
the mechanism used to generate the droplets: thermal
[3, 33, 48, 49] or piezoelectric (acoustic) [2, 37, 38, 50]
modalities (figure 1(a)). Thermal droplet bioprinting
function by generating heat within the bio-ink cham-
ber, which results in pulses of pressure that eject
picoliter volume droplets at the printer orifice [33].
While the piezoelectric bioprinter utilizes a piezo-
electric crystal actuator to generate acoustic waves
within the bio-ink chamber that expel the droplets
through the printer nozzle. The use of droplet
bioprinters has tremendously increased during recent
years due to relatively low cost, microscale precision,
high printing speed (10 kHz), high cell viability post-
printing, and compatibility with nonliving printing
materials (e.g., hydrogels) [17, 37, 51]. However,
certain drawbacks have hampered its use in tissue
biofabrication such as difficulty of printing high
viscosity materials (>10 centipoise) and high cell
densities (>10 million cells/ml) without resulting in
clogging of the printer ejector [5, 52—54]. In addition,
the mechanical properties of printed structures are
vulnerable due to use of low viscosity bio-inks, which
in turn impedes the creation of fully functional 3D
constructs [11, 55].

3.1.2. Laser bioprinting

Based on the laser-induced forward transfer method,
laser bioprinting has been also utilized for patterning
live cells and biofabrication of tissues [56, 57]. In this
approach, the cells are printed using a laser beam
pulsating at controlled duration of time [58]. The
device is composed of alaser beam focused on a ribbon
(a glass side which is coated with a laser-absorbing
layer made of titanium, gold, or polyimide mem-
brane), where the cells and biological materials are
excited and collected on substrate, which is facing the




Table 1. Comparison of 3D bioprinters.

Product Company Website Country Technology Materials Resolution Speed
Life-Printer X’ Bio 3D http://bio-3d.com Singapore  Extrusion, nano-jetting Biomaterials 10 pm 1-400 mm s~
Technologies
BioScaffolder 2.1 GeSiM http://gesim.de Germany Pressuredriven 3D printing; piezo- Hydrogels, biopolymers (e.g., collagen Step width: 2 pmin X/Y, Upto500 mm s~ '
electric nanolitre pipetting; and alginate), bone cement paste, 10 pminZ
pneumatic extruders and biocompatible silicones and poly-
piezodispensers mer pastes
TE subseries of nScrypt http://nscrypt.com USA Extrusion printing A few centipoise to 1 million cen- X/Yaccuracy: 12 pum; Zacc- X/Y max speed:
nScrypt's Table- tipoise; thermal plastic biopolymer uracy: 6 pm 100 mm s~ ; Z max
top series materials, gels and pastes in terms of speed: 50 mm s~
form for the materials
CellJet Cell Printer DigiLab http:// Japan — Ordinary cell media with watery con- X, Ymotor resolution of the —
digilabglobal.com sistency and viscous solutions such synQUAD s 1.5 gm and
as hydrogels positional accuracy is =
10 pom at 95% confidence
3D-Bioplotter EnvisionTEC http:// Germany Extrusion printing Soft hydrogels over polymer melts up Axis resolution (X-Y-Z): 0.1-150 mm s~
envisiontec.com to hard ceramics and metals 0.001 mm; minimum
strand diameter: 0.100 mm
Fab@Home Seraph Robotics http:// USA Extrusion printing Wide range of materials Position accuracy: 100 pm Max: 80 mm s~ typical:
Model 3 seraphrobotics.com 10mms '
BioFactory RegenHU http://regenhu.com Swiss Thermopolymer extruder, Ink-Jet Medium with a viscosity up to 10 pm Depend on the mat-
head; direct dispenser 10 000 mPa s~ erial type
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http://envisiontec.com
http://envisiontec.com
http://www.seraphrobotics.com
http://www.seraphrobotics.com
http://www.regenhu.com

Table 2. 3D bioprinting companies and products.

Company Website Founded year Country 3D printer Project/Products
Cyfuse Biomedical http://cyfusebio.com 2010 Japan Regenova: needle based spheroids printing Cartilage and subchondral bone;
Tubular tissue;
Liver tissue;
TeVido Biodevices http://tevidobiodevices.com 2011 uUs Cellatier: droplet printing technology Breast cancer;
Bone;
Regenovo Biotechnology http://regenovo.com 2013 China Extrusion bioprinting Blood vessel;
Liver;
Aspect Biosystems http://aspectbiosystems.com 2013 Canada Microfluidic based bioprinting technology Engineer tissues for Pharma R&D;
RegenHU http://regenhu.com 2007 Swiss BioFactory Printed dermis equivalent; BioTrack®, a three-dimensional optical biopsy unit
Osteopore International http://osteopore.com.sg 2003 Singapore Polycaprolactone printing Osteoplug; Osteomesh
Organovo Holdings http://organovo.com 2007 Us NovoGen MMX bioprinter exVive3D™ Liver Testing
Tissue Regeneration Systems http://tissuesys.com 2008 uUs TRS Scaffold printing Bone reconstruction and regeneration (FDA approved)
Next 21 http://next21.info 2000 Japan Scaffold printing Custom-made artificial bone implants
3D Bioprinting Solutions http://bioprinting.ru 2014 Russia 3Dbio Mouse thyroid
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Figure 1. Schematic illustration of bioprinting approaches. (A) Thermal and piezoelectric droplet bioprinting setups, (B) laser
bioprinting setup, and (C) pneumatic and mechanical extrusion bioprinting setups.

Table 3. Summary of bioprinting technologies.

Laser bioprinting Droplet bioprinting Extrusion bioprinting
Fabrication resolution (droplet size) >20 pm 50-300 pm 200 pm
Spatial resolution Medium-high Low Medium
Preparation time Medium-high Low Low-medium
Fabrication speed Medium-fast (200-1600 mm s~ ) Fast (1-10 000 droplet/s) Slow (10-50 pm s~ 1)
Throughput/Scalable production Low-medium High Medium
Material viscosity 1-300 mPa s ! 3.5-12mPas ' 30-6 x 10" mPas™'
Cell viability >95% >90% >40-95%
Single cell control High Low Low
Cell density Medium Low Medium-high
Multiple cells and Material delivery Medium Low-medium Medium
Cost High Low Medium

ribbon [58, 59] (figure 1(b)). The laser bioprinting is a
nozzle-less approach, which allows printing high cell
densities and high viscosities of bio-inks without the
conventional challenges associated with the droplet
and extrusion bioprintings such as clogging and
increasing the temperature of ejectors [60—62]. How-
ever, several shortcomings (e.g., high-cost of the
printer and inability to print large constructs due to
the limited width of the laser beam) have hindered the
successful translation of this approach [2]. In addition,
the laser bioprinting has a relatively low flow rate due
to the requirement of fast gelation kinetics to obtain
high shape fidelity for high resolution [2]. Moreover,
in many cases the final tissue-engineering construct
includes some of the metallic residue, which occurs
during the printing process as a result of the evapora-
tion of the metallic laser-absorbing layer [5, 52].

3.1.3. Extrusion bioprinting

The extrusion bioprinting approach is one the most
explored and affordable bioprinting systems. The
method is increasingly applied in tissue biofabrication
[63]. The extrusion bioprinting system is composed of
a dispensing (ejector or multiple ejector) system and
an automated three-axis (x—y—z) robotic stage con-
trolled by stage controller [11, 52]. In this approach, a
pneumatic or mechanical (piston or screw-based)
dispenser is used to deposit the bio-ink with sus-
pended cells on a building substrate [11, 52]

(figure 1(c)). The major advantages of the extrusion
systems are the ability to print high viscosity materials
with high cell densities at a relatively high speed with
an acceptable cell viability post-printing [64, 65].
However, this approach provides a relatively low
fabrication resolution (~200 pum) [2, 52]. The system
allows for a continuous filament of a viscous bio-ink
rather than a droplet. Direct and more spatial control
over the material flow can be achieved using the
mechanical approach; however, this approach can
result in a shear stress-induced cell deformation [66].
The pneumatic approach provides less deformation of
the cells; however, precise control over the material
flow is challenging as result of delay of compressed gas
volume in this system [2]. Furthermore, an acoustic
nozzle-less bioprinting approach was designed for
precise cell encapsulation in bio-fluids at picoliter scale
with high viability, which could eliminate the issues
associated with nozzle clogging in conventional ejec-
tor-based method [3, 43, 44]. The extrusion bioprint-
ing approach has the potential to enable various
innovative applications including the ability to pre-
serve cells for transfusion medicine [67, 68] and
investigate cells at a single-cell level for regenerative
medicine and omic applications [69].

3.2. Patterning and assembly-based approaches
Patterning or assembly of cells enables constructing
3D tissue architectures. These patterning and assembly
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techniques allow us to address some of the current
challenges in 3D bioprinting technology by providing
innovative experimental platforms based on high-
throughput, rapid, and directed assembly of cells, cell
encapsulating microgels, and spheroids. Patterning
and assembly strategies [13, 70-75] target obstacles
arising from structure and heterogeneity associated
with large-scale applications. Development of macro-
scale structures is particularly required for clinical
applications. Recent additive advances in assembly
techniques such as magnetic [21] and acoustic assem-
bly [76] may allow generation of new designs and
geometries, which can further lead to ordered and
complex structures (figure 2) [77]. Advanced additive
assembly technologies, such as self assembly [78],
robotic assembly [21], Faraday acoustic assembly
[76, 77, 79], bio-acoustic levitational assembly [80],
and magnetic assembly [70, 72, 81-86] enable the user
to organize, reorganize, and regenerate basic units to
form the 3D tissue architecture. Its reconfigurable
feature provides flexibility. Furthermore, it could lead
to development of rapid and easy-to-use bioprinters
and scaffold-free cell printing technologies [87].

3.2. Bioprinting materials/bio-inks

Mimicking the native tissue architecture and composi-
tion using 3D bioprinting approaches is quite challen-
ging, because balancing the physical and chemical cues
of the cell hosting biomaterials requires understanding
of cell physiology and cell-extracellular matrix (ECM)
interaction [2, 60]. Engineered 3D microenvironments
can be achieved by utilizing natural (e.g., collagen,
fibrin, hyaluronic acid (HA), hydroxyapatite, and
alginate) and synthetic (e.g., PCL, polylactide (PLA),
polyglycolide (PGA), poly(lactic-co-glycolic acid)
(PLGA), and polyethylene glycol (PEG)) polymers
(table 4) or hybrid biomaterials that merge natural and
synthetic materials together [2, 15, 53, 88—96].

3.2.1. Natural materials

Chemical and physical compositions of the natural
hydrogels can be tuned according to target tissue and
cell types [97]. Physical properties of biopolymers such
as stiffness, viscosity, and porosity play a critical role in
the survival and functionality of generated constructs
[2]. Most cell types can hydrolyze natural hydrogels
and secrete their own cellular matrix, allowing space
for cell growth and migration. Moreover, these
matrices can be designed to contain tissue specific
growth factors and chemokines such as transforming
growth factor beta (TGF- (), epidermal growth factor,
insulin-like growth factor as well as matrix metallo-
proteinase, which help to restore the chemical cues of
the microenvironment [98, 99]. One of the limitations
of natural hydrogels is the batch-to-batch variability,
which may affect the validation of the engineered
microenvironment as different batches may have
slightly different compositions [2].

A Arslan-Yildiz et al

Collagen- and fibrinogen-based hydrogels are
naturally-derived matrices and are widely used in tis-
sue engineering [100, 101]. Collagen type I is the most
abundant component of the native ECM and provide a
favorable 3D environment for cell adhesion and pro-
liferation [101]. Photocrosslinkable gelatin methacry-
late (GelMA)-based hydrogel combines biological
features permitting integrin-mediated cell adhesion
and proteolytic degradation [2]. GelMA is broadly
used in engineering artificial tissues due to its ease of
manipulation and photocrosslinking properties [21].
Alginate is highly biocompatible natural polymer that
can be easily crosslinked in calcium solutions; there-
fore, often used as bioink in 3D bioprinting applica-
tions [102—104].

Generation of 3D artificial tissues can also be
achieved by utilizing reconstituted basement mem-
branes from mouse tumors like Matrigel™ and Cul-
trex® into bioprinting process [105]. Basement
membranes are composed of ECM containing pro-
teins like fibronectin, laminin, and collagen IV that
play important roles in cell adhesion and spatial orga-
nization [88]. These natural membranes can be
applied in embedded and overlay culture to promote
3D cellular organizations. Introducing basement
membrane in a bioprinting polymer solution has
shown to sustain the geometrical architecture and
enhance the cell function [106].

3.2.2. Synthetic and semi-synthetic materials

To overcome the drawbacks of biologically derived
biomaterials such as batch-to-batch variability, a
library of semi-synthetic and synthetic biomaterials
have been engineered. These matrices offer a relevant
alternative as they have native ECM components
together with tunable material properties, resulting in
better reproducibility and comparability between
different studies. Thus, biocompatible synthetic poly-
mers such as PCL, PEG, PLA, PGA, and PLGA, are
frequently used in bioprinting applications [107-111].
PEG hydrogels are one of the most popular synthetic
matrices used in tissue engineering [112]. PEG based
hydrogels can be prepared by chemical or UV light
crosslinking of the functionalized polymers with
reactive chain ends, allowing cell encapsulation with
high viability [72]. Biomimetic PEG hydrogels can be
synthesized via the incorporation of a variety of ligands
from oligopeptides to whole protein growth factors to
restore matrix-derived biochemical signaling. For
example, the inclusion of arginine—glycine—aspartic
acid (RGD) peptides enables integrin-mediated cell
adhesion and promotes migration. However, synthetic
matrices are not as biologically relevant as naturally
derived 3D matrices, and do not contain the signaling
molecules (e.g., peptides) provided by native ECM
[113]. Self-assembled peptide hydrogels are also widely
used to generate 3D microenvironments for cell
culture. Peptide scaffolds are made of peptide
sequences that allow the scaffold to self-assemble




10P Publishing

Biofabrication 8 (2016) 014103

A Arslan-Yildiz et al

Assembled structure A

Floaters

(fa.as)

(fy.8,) ” (fs.@5)
~
(f5a5)

Initial state

Standing waves Assembled structure B

- _®
3-
n.:‘..... .:’ g(\
before assembly \mmO“ \,\xu‘e

Culture medium

Hydrogel

tissue culture

after assembly

Tissue culture

Before fusion

Figure 2. Patterning and assembly-based approaches. (A) Schematic illustration of cell encapsulation via hydrogel formation based on
UV photocrosslinking, (B) configuration/reconfiguration of hydrogels via assembly (scale bar: 1 mm). Reprinted by copyright
permissions from [21]. (C) Schematics of dynamic reconfiguration of the assembled structures on aliquid template, and (D)
numerical simulation of waveforms and assembled structures via liquid-based templated assembly (scale bar: 2 mm). Reprinted by
copyright permissions from [76]. (E) Schematics of acoustic node assembly of cell spheroids into a predefined patterns and formation
of 3D microtissue from assembled spheroids via spheroid fusion. Reprinted by copyright permissions from [149].
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under certain physiological conditions, permitting cell
encapsulation in the hydrogel [88]. For instance, BD™
PuraMatrix™ is a hybrid peptide hydrogel [114]. The
composition of BD™ PuraMatrix™ is similar to other
semi-synthetic hydrogels as it contains 99% water and
only 1% amino acids. Such engineered matrix allows
the control over the composition of growth factors,
cytokines, ECM proteins, and hormones.

One of the most recent approaches to engineer a
native-like 3D microenvironment is to use cells that
can generate the natural ECM [115]. This strategy is

based on initial seeding of the porous graft with death
programmed sacrificial cells that can secrete ECM and
be induced to apoptosis. The devitalized graft can be
further stored as an off-the-shelf product until seeded
with autologous cells [115].

Bioprinting materials/bio-inks can also be
designed to fulfill the mechanical and biological
aspects of target tissues [116, 117]. In this regard, the
selection and design of bio-ink requires critical evalua-
tion of the physiology of native organ. For example, in
load bearing organs, such as bone [118],

7
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Table 4. Synthetic and natural materials used in biofabrication.

Material Type Gelation method Cytocompatibility Cell type

Agarose Natural Thermal/chemical <95% HUVEC, 10T1/2
Alginate Natural Thermal <95% HeLa, RatSMC, NIH 3T3 fibroblast
Collagen Natural Thermal 95—75% RFMF

Fibrin Natural Enzymatic 85—70% HMVEC

Gelatin Natural Thermal/chemical 75-95% Hepatocyte

Matrigel Natural Thermal High, <95% HUVEC, 10T1/2

PEG Synthetic Thermal /photo High, <95% NIH 3T3 fibroblast
PHEMA Synthetic Thermal/photo Notstudied HepG2/C3A

PCL Synthetic Thermal <95% hMSC, L929 fibroblast
PLGA Synthetic Thermal <95% hMSC, L929 fibroblast

bioprinted graft should be stable enough to provide
mechanical strength especially for bone tissue cultur-
ing. PCL has shown to be a good candidate as bio-ink
in orthopedic applications [2, 116, 119, 120]. Compo-
site of PCL with osteoinductive hydroxyapatite parti-
cles improves the osteogenic features of the constructs
and brings them closer to the native stiffness of target
tissues [121]. Hydroxyapatite particle based bio-inks
can also be sequentially bioprinted with cell-loaded
alginate to form complex 3D osteogenic structures
[122]. Thus, the potential use of bioprinted biocompa-
tible synthetic polymers such as PCL and PCL matrix
reinforced with hydroxyapatite can enhance the
mechanical and biological performance of 3D scaf-
folds for biomedical applications [116, 117].

4. Biomedical applications

4.1. Bioprinting for tissue regeneration and
regenerative medicine

Different bioprinting approaches showed potential of
additive manufacturing in which generated tissues
hold promise to create tissue constructs mimicking
many tissues and organs such as liver, kidney, heart,
skin, neuron, and vascular systems. In this section, we
highlight major approaches for generating 3D printed
tissue constructs while maintaining cellular functions.

4.1.1. Vascular grafts

Tissue engineering is currently limited by vasculariza-
tion challenge, which creates issues in nutrient perfu-
sion, oxygen diffusion, and mass transportation for
in vivo systems. Vascular grafts are well-studied
models of 3D bioprinting technologies since they are
directly integrated with the solution of vascularization
problem. A ‘scaffold-free’ bioprinting approach was
utilized for fabrication of vascular grafts (figure 3)
[40, 123]. Tubular constructs were generated using cell
spheroids and agarose templates (figures 3(a) and
4(b)). Multicellular spheroids were used as building
blocks, and spheroids were assembled into tubular
structures by using agarose templates (figure 3(c)).
Additionally, vascular grafts were printed by using
three different cell types: human aortic smooth muscle

cells, human aortic endothelial cells, and human
dermal fibroblasts [124]. At the post-printing stage,
cells are allowed to fuse [124, 125] as shown in
figure 3(d), and vascular constructs were moved into a
bioreactor for a maturation step designed to improve
physical and mechanical properties of vascular grafts.
In another approach, formation of vascular channels
was achieved by combining 3D bioprinting technology
with perfusion techniques (figure 4) [126]. In this
study, the collagen hydrogel precursor was used for
bioprinting of human umbilical vein endothelial cells
(HUVECs) while vascular grafts were formed using
gelatin (figure 4(a) and (b)). The printed constructs
were then integrated into a polycarbonate flow cham-
ber to form fluidic vascular grafts. Further, viability
assays (figure 4(c)) confirmed that the viability of
printed vascular grafts was higher under dynamic flow
conditions.

4.1.2. Skin

Bioprinting of a skin tissue is one of the most
promising examples of bioprinting for several applica-
tions, such as development of topical drugs, wound
healing studies, and dermal toxicology research.
Various approaches have been developed to engineer
cellular microenvironment and physiology of human
skin. For instance, to develop skin substitutes, fibro-
blasts and keratinocytes were printed on a stabilizing
matrix (Matriderm) via laser assisted bioprinting
technique [127]. Both in vitro and in vivo trials showed
that neovascularization could be achieved by employ-
ing this technique. In another study, a direct-forward
bioprinting technique was used to print amniotic
fluid-derived stem cells (AFSCs) for wound healing
and skin regeneration in a mouse model [128]
(figure 5). This technique used a mixture of AFSCs and
bone marrow-derived mesenchymal stem cells
(MSCs) that were suspended in fibrin—collagen matrix.
At week 2, formation of a well-defined and ordered
epidermal layer was observed for MSC and AFSC
treated wounds (figures 5(b) and (c)), while epidermal
layer formation was poor for the wounds treated with
gel only (figure 5(a)). However, based on fluorescence
labeling results (figures 5(d) and (e)) cell migration did
not occur for MSC and AFSC printed samples, which
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Figure 3. Vascular graft printing. (A) Model agarose template for smallest diameter vascular graft and a more complex agarose
template for branched vascular grafts. (B) Assembled spheroids according to the tubular model in (A). (C) Assembled spheroids
according to the complex model in (A) and fusion of spheroids after 6 days of deposition. Arrows represent large (1.2 mm; solid
arrow) and small (0.9 mm; dashed arrow) branches. (D) Printing multicellular vascular tissue of human umbilical vein smooth muscle
cells (HUVEC, green) and human skin fibroblasts (HSF, red) and subsequent immunohistochemistry examination using
hematoxylin—eosin (H&E), a-actin, and caspase-3 stainings following 3 days of fusion. Reprinted by copyright permissions from [40].
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suggested that printed cells did not penetrate into
regenerating tissue.

4.1.3. Neuron

3D bioprinting of neural cells to construct brain-like
or neuronal structures is highly desirable to model
neuronal pathogenesis, regeneration, and networks, as
well as provide a platform to investigate new therapeu-
tic treatments (e.g., Alzheimer and Parkinson’s drugs)
[41, 129]. However, one of the main challenges of this
approach is the difficulty to recapitulate the brain
multi-layers, specifically in the medial or sagittal plane
(figure 6(a)) [129, 130]. In addition, patterning neuro-
nal tissues that are functional post-printing remains a
challenge. Recently, an extrusion 3D bioprinter was
used to create distinct layers of primary neural cells
encapsulated in a natural hydrogel [130] (figure 6(b)).
In this study, the authors built a 3D structure with
multilayered architecture that mimics brain cortical
tissue. The hydrogel used in this study was based on a
natural RGD peptide-modified gellan gum. Confocal
microscopy demonstrated that printed cells formed
3D neural networks after 5 days in culture (figures 6(c)
and (d)). In addition, cell viability results demon-
strated that there was no significant difference between
the printed group compared to the control

(non-printed) group for up to 5 days post-printing
(figures 6(e) and (f)). In another study, a piezoelectric
droplet bioprinter was used to pattern two adult rat
central nervous system cells [131] (i.e., retinal ganglion
cell (RGC) neurons and retinal glia cells). No signifi-
cant differences in cell viability and neurite outgrowth
were observed between the printed and non-printed
control cells. However, when glia cells were used as a
substrate for printed and control cells, the RGC
neurite outgrowth was increased significantly.
Recently, a novel bioacoustic levitation assembly
(BAL) approach was developed to engineer 3D brain-
like constructs [80] (figure 6). Random suspended
human neural progenitor cells (hNPCs) were levitated
to the nearest nodes of acoustic standing waves in a
fibrinogen solution by acoustic radiation force and
assembled into a multilayered cell construct
(figure 6(g)). The interlayer spacing can be flexibly
tuned by acoustic frequency in tens of seconds. The
levitated hNPCs were immobilized in the fibrin
hydrogel construct via gelation and differentiated into
neural cells in the 3D microenvironment to form both
inter-and intra-layer neural connections (figure 6(h)).
BAL provides a simple, rapid, and biocompatible
method to bioengineer multilayer tissue constructs for
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Figure 4. Vascular graft construction. (A) Fabrication steps of vascular channel using gelatin-cell mixture. (B) Fluorescence
micrographs showing the vascular channel a following 1 day of dynamic flow culture (endothelial cells: red and fluorescent beads:
green). (C) Cell viability (green: live and red: dead) of constructed vascular tissue under static and dynamic flow conditions. Reprinted
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a wide array of applications including neuroscience,
cardiovascular, and cancer biology.

4.1.4. Bone

The studies in bone regeneration often encounter two
major problems: graft porosity and vascularization
[132-136]. Gene therapy represents an ideal approach
for bone regeneration while delivering regenerative
molecules to the specific tissues [137]. A new techni-
que has been developed [138], which integrates
effective printing strategies with gene therapy for bone
regeneration studies. As an addition to bioprinting
technique, plasmid DNA encoding bone morphoge-
netic protein-2 (BMP-2) is added to the constructs to
induce osteogenic differentiation. The performance of
porous constructs was better than the non-porous
ones in means of BMP-2 production. Porosity and
high BMP-2 production enhanced the rate of osteo-
genic differentiation. Expression of osteogenic mar-
kers, alkaline phosphatase, and osteocalcin were
higher for porous and BMP-2 induced constructs
suggesting that porosity combined with gene induc-
tion provided a suitable microenvironment for bone
regeneration. Recently, another approach has been
reported, which incorporates bioprinting technology
with a nanoliter gel droplet system to create biomi-
metic fibrocartilage microenvironment [37]. Human

MSCs were encapsulated in bio-ink, which is gelatin-
based metacrylated hydrogel. In addition, BMP-2 and
transforming growth factor 51 (TGF-31) were added
to mimic the native fibrocartilage phase of the bone.
Quantitative RT-PCR analysis supported that upregu-
lation of osteogenesis and chondrogenesis occured in
3D fibrocartilage model, thus making this approach as
afunctional tissue model system.

4.1.5. Liver

Primary hepatocytes and stem cell derived hepatocytes
are heavily used for the tissue engineering of liver
tissues [29, 139-146]. However hepatocytes lose their
functionality easily under culture conditions [29]. To
sustain long-term hepatocyte functionality, a new
technique has been reported [147], which utilizes
bioprinting technology to form hepatic cord like
tissues called ‘canaliculi’. Rat hepatocytes were cul-
tured and canaliculi formation was observed starting
from day 3 with collagen matrix. Expression of the
apical marker MRP2 and basolateral marker CD147
verified the functionality of hepatocytes.

A biomimetic ECM system has been used
for evaluation of hepatocyte function on different
ECM-based hydrogels [148]. Primary human
hepatocytes were cultured in liver ECM extracts,
which was combined with Collagen Type I, HA or
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Figure 5. Re-epithelization of skin tissue. Histological examination of gel-only, (B) bone marrow-derived mesenchymal stem cell
(MSC) treated, and (C) amniotic fluid-derived stem cell (AFSC) treated skin tissues (scale bars 50 pzm). Fluorescence micrographs of
(D) AFSCs and (E) MSCs showing that both cells are transient in wound regeneration process (green: GFP expressing MSC and AFSC;
blue: nuclear staining/DAPI, scale bars 50 ym). Reprinted by copyright permissions from [128].

Green — AFS-GFP; Blue - DAPI

Epithelium

Green — MSC-GFP; Blue - DAPI

heparin-conjugated HA (HP). Primary human
hepatocytes were maintained in sandwich-like hydro-
gels for 4 weeks. Increased hepatocyte metabolism,
steady levels of secreted albumin, and urea confirmed
that customized ECM-based hydrogels might be a
suitable cell expansion platform for cell therapy, tox-
icology experiments, and further drug screening
studies.

Another approach has been recently reported
[149] for the biofabrication of in vitro 3D liver model.
Multi-layered tissue constructs were formed by stack-
ing rat and human hepatocyte cells with endothelial
cell layers. This work showed that multilayered cel-
lular architecture could be successfully used as a liver
analogue for drug studies and other biomedical appli-
cations. In addition, a recent scaffold-free acoustic
node assembly method was developed to bioengineer
3D in vitro tissue model. Thousands of tissue spher-
oids in a fluidic environment can be rapidly assembled
into a predefined architecture in seconds. The assem-
bled architecture can be dynamically reconfigured
to diverse patterns by altering the wave frequency.
Assembly of hepatocyte spheroids was demonstrated
for generation of 3D liver model. Formation of
bile canaliculi and hepatocyte gap junctions was
observed in the bioengineered liver model via anti-
MRP2 and anti-Connexin 32 immunostaining after
6 days in culture. This acoustic node spheroid

assembly strategy represents an efficient and rapid way
to generate 3D tissue models with a control over the
predetermined geometric patterns. It also allows
switching between patterns in a matter of seconds
using high throughput assembly of spheroids guided
by vibrations.

4.2, Bioprinting for various biomedical applications
Recent advances in cell manipulation and bioprinting
technologies have allowed for various biomedical
applications, including cryoprinting of cells for bio-
banking [67] and generation of 3D models for drug
screening [40, 123-129].

4.2.1. Drug discovery

Development of in vitro tissue models holds a great
promise for drug discovery studies [143]. Drug
discovery is likely to be one of the most promising and
growing area in medical applications of 3D bioprinting
while technologies for artificial organs may incur
delays due to regulatory hurdles. Recent technological
advancements have accelerated drug design and dis-
covery significantly, but the number of approved
experimental platforms is still insufficient due to
employment of 2D monolayer systems. Miniaturized
3D tissue models are valuable experimental platforms
for design, discovery, and development of new genera-
tion drugs, since they mimic native microenvironment

11
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Figure 6. Neuron bioprinting and assembly. (A) Schematic illustration of the six layers of brain cortex. (B) Printed 3D structure and
illustration of the extrusion-based bioprinter. (C), (D) Cortical neurons encapsulated RGD peptide-modified gellan gum after 5 days
in culture. (C) -III tubulin (red) and DAPI (blue) stainings for cortical neuron and nuclei, respectively. (D) Confocal micrographs
showing the 3D neuronal model after 5 days in culture. (E), (F) Cell viability of non-printed (control, (E)) and printed (F) primary
cortical neurons encapsulated in RGD peptide-modified gellan gum after 5 days in culture. Scale bars represent 50 xm (C), (D) and
100 pum (E), (F). Reprinted by copyright permissions from [130]. (G) Schematic illustration of acoustic levitation to fabricate 3D
multilayered neural constructs. (H) 3D multilayer neural constructs assembled by acoustic levitation and differentiated in media for 8
days. Confocal micrograph showing the interaction between immunostained (nestin, red; Tuj1, green; DAPI, blue) cells in different
layers. Scale bars represent 500 im (left panel), 250 pum (middle panel), and 100 yum (right panel). Reprinted by copyright permissions

from [80].

of the tissues more accurately than 2D cell cultures
[83, 150-154]. 3D tissue models have a high potential
to evaluate and predict success or failure of drug
candidates in preclinical stages [155, 156]. These
microsystems offer more predictive and cost-effective
alternatives to in vitro or animal-based preclinical drug
screening [155]. The applications of 3D printing in
drug discovery can provide many other benefits such
as customization and personalization of medical
products and drugs, fast and precise drug response,
and increased output of drug discovery while decreas-
ing preclinical trial costs.

Many drug screening studies have been performed
by using different bioprinting platforms such as cell
spheroids [157-160], cell encapsulation [161, 162],
and microfluidic systems [163, 164]. Recently, an array
type drug screening platform was used as a droplet
bioprinting technology to produce sub-nanoliter
droplets [165]. It describes the microfabrication of
CYP3A4 based protein array for multiplexing studies.
In another approach, a valve-based bioprinter was uti-
lized to fabricate a 3D lung model for drug evaluation
[166]. The 3D architecture was generated by layer-by-
layer approach for high-throughput drug screening.
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Employment of 3D tissue constructs could provide
better results in drug development and evaluation due
to their ability to mimic cellular structures, while
reducing the number of animals utilized for drug
development studies [152].

4.2.1. Biopreservation

Conventional cryopreservation methods use bulk
volumes that impede proper cooling and rewarming,
causing detrimental alteration of cells during biopre-
servation [167-172]. Utilizing bioprinting technology
to transform a bulk sample of cells into micro- and
nano-liter droplets can address the challenges asso-
ciated with conventional cryopreservation (e.g., ice
crystal formation) [167]. Recently, a bioprinting
approach in conjunction with innovative bio-inspired
cryo-inks was utilized to vitrify red blood cells (RBCs)
[67]. The bioprinter generates considerably smaller
volumes of cell-encapsulated droplets (<0.15 nl), with
the aim of reducing the unfavorable effects on RBCs by
eliminating the need for high cryoprotectant concen-
trations to achieve vitrification, and it provides ultra-
high cooling and rewarming rates that enable preser-
ving cells minimizing ice crystal formation. The cells
were also loaded with a bio-inspired ectoine-based
cryo-ink, which acts as a non-toxic cryoprotectant, to
eliminate the toxic effect associated with conventional
cryoprotectants (e.g., dimethyl sulfoxide and glycerol)
[167, 173]. Following rewarming, the biopreserved
cells maintained their unique morphology,
mechanics, and function. The bio-inspired bioprint-
ing approach has the potential to create new avenues
to biopreserve cells (e.g., stem cells, lymphocytes, and
oocytes) for regenerative and reproductive medicine
applications [7, 68, 174].

5. Future perspective and challenges

In this review, we have illustrated current guiding
principles for 3D bioprinting in tissue fabrication, as
well as recent advances and technological develop-
ments. The speed at which our knowledge has
advanced with additive manufacturing and automated
printing systems shows a promise to expand our basic
science and engineering capabilities towards addres-
sing healthcare problems.

One of the major milestones in 3D bioprinting is
to fabricate and mimic cellular microenvironments
from molecular to macroscopic scales in an autono-
mously ordered manner for tissue engineering and
regenerative medicine. Recently developed 3D bio-
printing technologies provide multiple approaches for
biofabrication of tissue constructs. In particular, inno-
vative technologies that engineer 3D cell micro-
environment hold promise to facilitate the artificial
tissue fabrication, and eventually to enhance our
understanding from cellular interactions to tissue

A Arslan-Yildiz et al

formation. By cooperation of various cutting-edge
technologies, such as microfluidic systems [147, 149],
biopatterning [37], and layer-by-layer assembly
[149, 175] biomanufacturing of micro-tissue con-
structs within scaffolds or scaffold-free environments
has been achieved. Despite the great progress of bio-
material development for tissue engineering, there are
still certain challenges that need to be overcome. For
instance, vascularization is one of the most important
limiting parameters in tissue engineering and bio-
printing [176, 177]. Due to restricted structure and
vascularization challenges, hypoxia, apoptosis, and
immediate cell death occurs, and thus, there is an
urgent need to developed innovative solutions for vas-
cular networks. Up to now, meeting this challenge has
been mostly attempted by fabricating porous scaffolds
[178], which provides sufficient space for vasculariza-
tion. However, this approach cannot overcome the
vascularization challenge completely due to the diffu-
sion of cells and other materials into these porous
structures [179]. Evidently, advances in bioprinting
technologies will provide potential solutions to over-
come this problem while forming interconnected,
well-defined vascular structures during biomanu-
facturing process. On the other hand, mechanical
strength and stability in 3D tissue engineering are
among the key requirements [180]. For instance, in
regeneration of hard (e.g., bone) and soft (e.g., vas-
cular grafts) tissues, elastic modulus is an important
parameter that needs to be optimized in those tissue
constructs [181-183]. Furthermore, the development
of a fully closed bioprinting system that integrates
printing and post-printing processes such as in vitro
culture and maturation of tissue constructs is still a
challenge. Once the challenges mentioned above are
addressed, scaling up bioprinting technologies will
potentially improve rapid clinical solutions and
advance medical implants. Further, we envision that
the integration of cells and biomaterials through bio-
printing with microfluidic technologies are likely to
create unique microenvironments for various applica-
tions in cancer biology, tissue engineering, and regen-
erative medicine [172, 184-188]. Additionally,
developments on high-throughput biomanufacturing
of 3D architectures will pave the way for further
advancements of in vitro screening and diagnostic
applications, potentially enabling complex organ
constructs.
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