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 Cell-based biosensor s (CBBs) are emerging as a sensing platform in     which live cells 
are utilized to sense external stimuli including physical, chemical, and biological 
changes. Till now, CBBs have demonstrated a broad range of applications including 
diagnostics, drug screening, environment monitoring, and biosafety monitoring. 
Although promising, current CBBs are normally based on cells cultured in two-
dimensional (2D) surfaces, which brings challenges such as ease of contamination and 
limited capability for long-time preservation. In addition, cells grown in 2D culture 
environments cannot fully represent microenvironment in three-dimensional (3D) 
native tissues and may result in analytical variations such as in drug screening. One 
potential strategy to overcome these challenges is to incorporate cells in 3D hydrogels, 
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which provide cytocompatible microenvironments for prolonged cell preservation 
and improved phenotypic similarity with cells in native tissues. In this chapter, we 
present an overview of  cell-encapsulating hydrogel based biosensors (CHBBs) and 
highlight the unique features of CHBBs as opposed to traditional CBBs.

1. Introduction

 Cell-based biosensors (CBBs), also named as whole-cell biosensors, are analytical 
devices incorporating whole cells (e.g., native cells, genetically modifie d cells, syn-
thetic cells, etc.) with a signal transducer (e.g., electronics, optics).1–7 In CBBs, cells 
f unction as sensing units that interact with analytes and respond in a cytophysio-
logical manner. The transducer then converts cellular responses into readable sig-
nals. By correlating these signal readouts with the original stimulus, characterization 
of biological samples such as sample type and target concentration can be quanti-
tatively or qualitatively obtained (Fig. 1).

In most of CBBs, cells are patterned/cultured on two-dimensional (2D) sur-
faces. Although surface-based cell culture brings advantages such as ease of imple-
mentation, and compatibility for optical/electric detection, they are associated 
with issues such as ease of contamination for field applications, and incompatibil-
ity for long-time preservation of mammalian cells or for immobilization of bacte-
ria. Moreover, when cells are cultured in a monolayer, they exhibit significant 
differences in phenotypes compared to cells in native tissues. Hence, cells on 2D 
surfaces do not effectively represent cells in complex three-dimensional (3D) tissue 
environments.8–10

Fig. 1.  Schematic of a cell-encapsulating hydrogel-based biosensor. CHBBs are composed of three 

basic components, namely, cell, hydrogel and signal transducer. Cells function as a sensing unit in 

response to physical, chemical and biological stimuli in the surrounding microenvironment. 

Hydrogels provide a 3D ECM. Cellular responses are converted to readable signals by optical/elec-

tronic transducers.

b2086_VOL-III_Ch-12.indd   328b2086_VOL-III_Ch-12.indd   328 07-Dec-15   5:45:53 PM07-Dec-15   5:45:53 PM

 G
el

s 
H

an
db

oo
k 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
N

FO
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/1
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



 Cell-Encapsulating Hydrogels for Biosensing   329

b2086  Gels Handbook: Fundamentals, Properties, Applications (In 3 Volumes)

Hydrogels (such as  collagen, fibrin,  alginate, and  polyethylene glycol (PEG)) 
are extensively used as biomaterials to mimic extracellular matrix (ECM) due to 
their cytocompatibility, moldability, tunability in mechanical properties, high-
water content, and porosity.10–12 The strategy of encapsulating cells within 3D 
hydrogel constructs has been successfully used in multiple applications such as 
creating 3D tissue structures for bottom-up tissue engineering, minimizing con-
tamination, and reducing immune rejection for cell delivery in vivo.10,13–16 By 
bringing together hydrogels, cells, and signal transducers,  cell-encapsulating 
hydrogel-based biosensors (CHBBs) present improved functionality similar to 
cells in native tissues and are promising to become a new paradigm for CBBs. 
In this chapter, we first discuss three basic components of CHBBs, namely, hydro-
gels, cells and signal readout methods, and we then present various applications of 
CHBBs. Emphasis is placed on the unique features of CHBBs compared to tradi-
tional CBBs. Current challenges and their potential solutions of CHBBs are also 
discussed.

2. Components of Cell-Encapsulating Hydrogels

2.1. Hydrogels

2.1.1. Hydrogel materials

Hydrogels have attracted tremendous research interest over years in both scientific 
and industrial applications because of high-water content and biocompatibility. 
 Cell-encapsulating hydrogels provide mimicries for 3D ECM, which improves cell 
viability, proliferation and maintains metabolic activities such as secretion of cell 
specific cytokines. Hydrogels can be categorized into natural and synthetic hydro-
gels.16,17 Natural hydrogels are extracted from animal tissues such as collagen, gela-
tin, fibrin, hyaluronic acid, chitosan, as well as plants such as seaweeds. Compared 
to natural hydrogels, synthetic hydrogels provide a better control over reproduci-
bility with minimal batch-to-batch variations, which is critical in  biosensing appli-
cations. PEG, poly(vinyl alcohol) and poly(hydroxyethyl methacrylate) are the 
most widely used synthetic polymers for cell encapsulation.18 Here, we discuss 
hydrogel materials that have been demonstrated for 3D cell encapsulation for bio-
sensing applications.

Collagen — Collagen is the most abundant protein in ECM, comprising approxi-
mately 25% to 35% of the total protein mass in animal body.19 Collagen is among 
the most popular natural hydrogels for cell encapsulation due to its biocompatibil-
ity and availability. Cell homing and bio-mimicry of the collagen hydrogels 
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provide highly sensitive cellular responses in biosensor studies.  Collagen type-I is 
the most widely used among all collagen types. Polymeric structure of the collagen 
has peptide domains with amino acid sequences such as Asp–Gly–Glu–Ala 
(DGEA) and Gly–Phe–Gln–Glu–Arg (GFQGER) that regulate cell adhesion and 
phenotypic activities. However, collagen hydrogels have poor mechanical proper-
ties. They are soft with elastic moduli, ~5 kPa. Mixing collagen with other hydro-
gels is a common practice to enhance the mechanical rigidity as well as specializing 
hydrogels for culturing sensitive cell types such as neurons.20 Due to its biocompat-
ibility in  biosensing applications, collagen has been used to encapsulate a wide 
variety of cells (e.g., stem cells and cancer cells). In addition, collagen is used to 
coat the surface of biosensor rods to increase biocompatibility and to prevent 
immune rejection for in vivo transplantation.22

PEG —  PEG is a synthetic hydrophilic polymer with good biocompatibility, non-
immunogenicity, and high resistance to protein adsorption. These properties make 
PEG one of the most popular synthetic polymers in medicine and biomedical 
applications. PEG can be synthesized in different chain lengths for specific pur-
poses. PEG can be chemically modified with methacrylate groups, which becomes 
photo-crosslinkable, flexible to form the desired shape and spatial organization. 
Further, PEG hydrogels can be modified with various biological agents such as 
short peptides (i.e., Arg–Gly–Asp, RGD), enzymes (i.e., matrix metallopeptidase 
13, MMP-13), growth factors (i.e., vascular endothelial growth factor, VEGF) or 
polymers to induce degradation (i.e., disulfide group, polyester, and fumarate). The 
mechanical properties of PEG hydrogels vary by molecular weight and crosslinking 
efficiency. The synthesis and modifications of PEG hydrogels can be standardized 
to enhance reproducibility. In this regard, biologically modified PEG hydrogels are 
promising materials for encapsulating cells for biosensing applications.23 Cell-
encapsulating PEG hydrogels have been developed as oxygen sensors utilizing fluo-
rescent particles.24 Moreover, PEG hydrogels can be utilized to respond to changes 
in pH24 or cytokines26 as well as to study the binding kinetics of antibodies.27,28 

Alginate —  Alginate, also known as alginic acid, is derived from brown algae. It is 
an anionic polysaccharide with high-water absorption capacity. Alginate is bio-
compatible and is widely used in food industry, drug delivery, and wound dressing 
applications. In long-term cell encapsulation studies, biological properties of algi-
nate might be tuned with addition of peptides and/or growth factors to generate 
more favorable microenvironments for cells. RGD peptides are widely used to 
promote cell adhesion and to functionalize encapsulated cells. Due to its easy han-
dling and crosslinking properties, alginate also finds applications in  cell-encapsulating 
hydrogels for biosensing. Due to its anionic nature, alginate is sensitive to electric 
changes, which makes it a good candidate for electric sensing. In industrial appli-
cations, fungal cells have been encapsulated in alginate to detect changes in pH,29 
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and fibroblast encapsulating hydrogels have been used for detection of specific 
chemical agents.30

Agarose —  Agarose is a polysaccharide derived from seaweed and is one of the 
main components of agar. The stiffness and porosity of agarose gels can be tuned 
by varying densities and concentrations. It is mostly used in gel electrophoresis to 
separate proteins and nucleic acids. Cell-encapsulating agarose can be used for 
migration assays and growing bacterial cells. Agarose hydrogels create favorable 
microenvironments for bacterial cells to detect chemical contaminations in drink-
ing water.31

2.1.2. Design and fabrication of hydrogels for  biosensing applications 

The design of a  cell-encapsulating hydrogel should take into account that the 
hydrogel should be biocompatible, porous and provide an essential for the cell 
survival and functionality. Besides, the hydrogel should not interfere with the read 
out signal, introducing background signal noise or luminescence shielding of the 
cell response. In addition, hydrogels should be highly standardized, and the batch-
to-batch variability should be kept at a minimum range. Commercialization 
efforts for such systems require the accessibility, simplicity in use, cost efficiency 
and high throughput in mass production as well as long shelf life. Merging more 
than one biosensing features to biosensor design can significantly promote the 
wide applicability of the biosensing devices.

Assembly approaches — Fabrication techniques for cell-encapsulating hydrogels 
use a similar approach to have cells suspended in hydrogel prepolymer solution 
followed by crosslinking. The general cell-encapsulating approach is to mix the 
cells with the liquid form of polymer, and crosslink by temperature (e.g.,  collagen, 
agarose), chemicals (e.g., crosslinking  alginate in calcium chloride solution) or 
with ultraviolet (UV) light (e.g., methacrylated PEG). There is a growing interest 
in engineering 3D living constructs from microscale cell-encapsulating hydrogel 
units16 using different assembly principles such as magnetic,32–35 acoustic,36 surface 
tension,37 liquid-based template,38 ratchet-based,39 microfluidic,40–42 and robotic 
principles.43 Advantages and disadvantages of these microscale assembly approaches 
were discussed in previous chapters.44–48

Bioprinting — Bioprinting emerged as a powerful method to pattern cell-encapsulating 
droplets on a receiving surface for biological applications, including tissue-like 
structures49 and biosensors,50–52 or cell-free polymer blocks for numerous applica-
tions such as 3D printed micro-battery53 or bionic ear.54 Here, we focus on the use 
of bioprinting technologies in developing cell-based biosensors, and illustrate 
underlying mechanisms of bioprinting to deposit cell-encapsulating droplets. 
Bioprinting offers high throughput, computerized xyz controlled deposition of 
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multiple bioactive factors and cells to a receiving substrate. Bioprinting has been 
demonstrated in several applications, including tissue engineering, microphysio-
logical system engineering, as well as biosensor fabrication.55 With these capabili-
ties, bioprinting can reduce the cost of fabricating living biosensors. A biosensor 
platform was presented with a lensless charge-coupled device (CCD) and bio-
printed smooth muscle cells on a microfluidic chip.50,51 The CCD was utilized to 
evaluate cellular changes in morphology and viability to an external stimulus. Cell 
alignment and orientation were quantified in seconds without labeling. Recently, 
bioprinting has been also used to pattern mouse myotubes onto micronized canti-
levers and ultimately to fabricate muscle-powered biosensors52 (Fig. 2A). Results 
showed that mature myotubes were formed only after 4 days in the bioprinted 
samples, whereas the same process took >14 days in the control group of randomly 
seeded cells. Synchronous responses of cells to electrical and chemical stimuli were 
also investigated. These results are promising to demonstrate fabrication of biosen-
sors at high throughput via bioprinting.

Computational simulations can help to understand how parameter, prior to 
actual experimentation, affect cell encapsulation or post-printing cell proliferation 
and viability.56–58 Encapsulation of a cell or multiple cells into pico/nano-liter drop-
lets is a probabilistic phenomenon59,60 (Fig. 2B). Statistical models were presented 
to provide an understanding of cell-encapsulation process.59 Results were pre-
sented as probability distributions, P(Xt) as a function of different target cell den-
sities and types of cell loading (Fig. 2C). These statistical functions evaluated the 
probability of a single target cell suspended in a heterogeneous cell mixture to be 
encapsulated in an ejected droplet. While the ratio of target cells and homogeneity 
decreased in cell suspension, each probability function followed a Poisson distri-
bution (Fig. 2C).

During the landing of ejected cell-laden droplets, mechanical aspects such as 
hydrodynamic pressure, capillary forces, and shear stress, might cause deformation 
of droplet and cell surface61,62 (Figs. 2D and 2E). Eventually, this process can lead 
to programmed cell death (apoptosis). However, these experimental dynamics can 
be adjusted by decreasing/increasing ejection velocity or by replacing encapsulat-
ing fluids with better combination of material properties. Cell fate may depend on 
the hydrophobicity/hydrophilicity of the receiving surface, which is highly corre-
lated with contact angle between droplet medium and surface. Prediction of cell 
fate using simulations can provide more parametric control over biosensor designs 
as well as complex viable tissue surrogate designs.32–36,44,63 A finite-difference/front-
tracking simulation model was reported for deposition of viscous compound 
droplets onto a receiving surface as a model for cell printing process.64–66 By simu-
lation, physical parameters were optimized for minimum cell deformation. 
Analyses were carried out for a set of dimensionless parameters, i.e., Weber 
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number (We), diameter ratio (d
o
/d

i
), viscosity ratio (µ

c
/µ

d
), Reynolds number (Re), 

surface tension ratio (σ
o
/σ

i
), and equilibrium contact angle (θ

e
). We and Re are 

widely-used non-dimensional numbers in fluid dynamics67 to evaluate the influ-
ence of inertial forces compared to surface tension and viscous forces, 

Fig. 2.  (A) Biosensor fabrication via bioprinting cells onto cantilevers. Mouse muscle myoblast cells 

bioprinted on cantilevers. (top) Bioprinted cells formed myofibers on all cantilevers after 4 days in 

culture. (bottom) Non-printed cells randomly distributed on cantilevers and no myofibers were 

observed after 7 days. Scale bars 200 µm. (B–E) Statistical and computational modeling of cell encap-

sulation and printing process. (B) A droplet ejector was filled with heterogeneous mixture, including 

target and non-target cells for random cell encapsulation process. (X
d
) the number of droplets that 

contain cells, (X
c
) number of cells per droplet, (X

t
) number of target cells, and (X

s
) droplets encap-

sulating a single target cell, were mapped onto a matrix of cell-encapsulating droplets. (C) Cell 

encapsulation probability, P(X
t
), as a function of number of target cells per droplet for cell concentra-

tion = 1.5 × 105 cells ml−1. (D) Simulation of cell printing process. Pressure contours and pressure 

distribution on the cell were plotted at the left half and the right half, respectively. Governing non-

dimensional numbers are: We = 0.5, Re = 30, d
o
/d

i 
= 2.85, σ

o
/σ

i
 = 2541, µ

c
/µ

d
 = 10. (E) Sequential 

impact images of cell-encapsulating droplet. (A) is reproduced with permission,52 (B) with permis-

sion,59 (C) with permission,66 and (D, E) with permission.
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respectively.68–70 The computational results demonstrated that the geometrical 
deformation of cell monotonically increased: (i) as d

o
/d

i
 decreased; (ii) as q

e
 

decreased (iii) as µ
o
/µ

I 
increased; (iv) as Re increased; or (v) as µ

c
/µ

d
 decreased. On 

the other hand, a local minimum, at least, of maximum geometrical deformation 
was obtained at We = 2. Results demonstrated that θ

e
 and µ

c
/µ

d
 were strongly cor-

related with cell fate.
Such computational models can accelerate the development of more precise 

and reliable biosensors via bioprinting. Next-generation models should incorpo-
rate non-Newtonian features of fluid flows,71,72 smaller contact angles, micro-
structured models of cells, and multiple patterning of droplets.

2.2. Cell-based sensing units

2.2.1. Introduction of cell-based sensing units

Cell is the basic unit of structure and function in most organisms, spontaneously 
perceives physical, chemical, and biological changes in its surrounding microenvi-
ronment, and responds in a cytophysiologically relevant manner.2 Cell membrane 
is a selectively permeable interface that consists of a phospholipid bilayer with 
embedded proteins (e.g., receptors, channel protein), permitting intracellular–
extracellular mass exchange. Of these proteins, receptors serve as microsensors and 
monitor environmental changes. Activation of the receptors by an external stimulus 
gives rise to a series of intracellular signaling cascade, which may result in complex 
cell physiological changes at a wide spatiotemporal scale (from the molecular level 
to the cellular level ranging from nanoseconds to hours). For example, folding of 
β-hairpins occurs in microseconds73; activation of G protein-coupled receptors 
(GPCRs),74 inositol triphosphate receptor (IPR) mediated calcium release,75 cyto-
plasmic protein and membrane protein translocation76 ion transmembrane flux 
through ligand-gated ion channel77 can be completed in milliseconds; chemotaxis 
induced neutrophil migration to an inflammation site takes seconds78; activation of 
protein- and lipid-mediated kinase cascades can be completed in minutes; and 
phenotypic changes generally take hours and even days. By correlating cell physio-
logical changes with external stimuli, cells can be explored as a sensing unit to 
detect the existence of pathogens and toxins in food, clinical and environmental 
samples. In addition, these cytophysiological changes can also be used to deduce 
functional information (e.g., toxicity and efficacy of pharmacological agent) of a 
known stimulus, which can be useful for drug screening.

Biological macromolecules such as antibodies, enzymes, and nucleic acids 
have been widely used as sensing units in broad applications owing to their speci-
ficity and sensitivity. Although  CBBs explore the same molecular recognition 
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mechanism with  molecule-based biosensors (MBBs) via interactions between 
cellular membrane proteins and external stimuli,  CBBs have their own unique 
features. First, some cell types are more robust than biomolecules under harsh 
conditions (e.g., thermophiles at high temperatures and acidophilus under high 
acidic conditions), whereas biomolecules, including proteins and deoxyribonu-
cleic acid (DNAs) may lose their functions as a result of denaturation or degrada-
tion when exposed to the similar conditions. Second, CBBs enable spatiotemporal 
amplification of stimulation signals via intracellular signaling networks, which 
make it possible to detect subtle interactions between cells and stimuli. On the 
other hand, MBBs may require specific labeling using materials such as gold 
nanoparticles and quantum dots for signal amplification. Third, CBBs, especially 
bacteria based biosensors, are more cost-effective than MBBs. Bacteria can rap-
idly proliferate, which reduces the assay time and cost. Fourth, CBBs are capable 
of responding to a variety of biohazard substances (e.g., toxins, pathogens) in a 
cytophysiologically relevant manner akin to human beings and animals, thus 
offering an alternative platform for drug screening.2 Fifth, CBBs allow more 
sophisticated applications than MBBs by bioengineering cells with functional 
exogenous genes or synthesizing artificial cells.79–81 Comparison of MBBs and 
CBBs is given in Table 1. 

Table 1.  Comparison of cell-based and molecule-based biosensors. Mammalian-cell based biosen-

sors and bacteria-based biosensors are listed separately due to their significant difference.

Cell-based biosensors

Molecule-based biosensors
Eukaryotic cells 

(e.g., Mammalian cells)
Prokaryotic cells 

(e.g., bacteria)

Pros 1.  Highly specific 

receptors

2.  Spontaneous signal 

amplification

3.  Provide functional 

information

1.  Long-term stability 

and shelf life

2.  Inexpensive to expand 

bacterial population

3.  Spontaneous signal 

amplification

1. High specificity

2. Easy to immobilize

3.  Linear response and 

suitable for quantitative 

analysis.

Cons 1.  Expensive to expand 

mammalian cell 

population

2.  Vulnerable to 

environmental changes

3.  Difficult to deduce 

original stimulus in 

case of downstream 

cytophysiological events 

1.  Complex signaling 

transduction pathway

2.  Difficult to deduce 

original stimulus 

1. Expensive to manufacture

2.  Easy to be degraded and 

denatured at the field
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2.2.2. Strategies for cell-based  biosensing

Bacteria and mammalian cells have been widely used as a sensing unit in  CBBs. 
Bacteria are robust to harsh microenvironments, which make them suitable for 
applications such as deployment on the field. In addition, it is not expensive to 
maintain and expand a bacterial population. Compared to CBBs that immobilize 
bacteria on a 2D surface, bacterium-encapsulating hydrogels have advantages, 
including improved immobilization/packaging, minimization of contamination 
from other microorganisms and ease of deployment. However, wild-type bacteria 
usually develop comprehensive panels of membrane receptors with complex sign-
aling cascade networks to survive in nature. Therefore, one downstream cytophysi-
ological change in bacteria can be initiated by multiple upstream cytophysiological 
events, which brings difficulty in analyzing the presence of an unknown stimulus 
based on only downstream cytophysiological change. Adult mammalian cells are 
usually highly differentiated and responsible for specific tasks in a multicellular 
organism. Some specialized mammalian cells such as taste-receptor cells, photore-
ceptor cells and gustatory-receptor cells can be used for highly sensitive detection 
of a specific external stimulus. Despite their great promise, mammalian cells are 
fragile to environment changes and require well-controlled culture environment 
(e.g., proper temperature, humidity, carbon dioxide concentration, and culture 
media) to maintain their normal cytophysiology, and thus it is a challenge to 
deploy mammalian cells in harsh environments. In addition, maintenance of 
mammalian cells is labor-intensive, which raises the cost of CBBs. Here, we review 
cell-based sensing units reported in  CHBBs, from the perspective of sensing mech-
anisms. We discuss four types of sensing mechanisms (i.e., voltage gated channels, 
GPCR receptors, nuclear receptors and immunoglobulin receptors) that are widely 
used in CBBs (Fig. 3). More detailed information regarding natural receptors in 
sensors can be found in literature.31,82,83

 Voltage gated ion channel — Voltage-gated calcium channel (VGCC) is one of the 
trans-membrane ion channels with permeability to calcium ions 1000 times 
greater than sodium ions. VGCCs are widely found in the membrane of excitable 
cells (e.g., neurons, cardiac cells, muscle cells, and secretory cells) and explored as 
a mechanism for  biosensing ions and small molecules. Under normal cytophysio-
logical conditions, VGCCs are closed, and the concentration of intracellular Ca2+ is 
several thousand times higher than extracellular Ca2+. Exposed to a high concentra-
tion of extracellular Ca2+ ions, VDCCs are activated due to membrane depolariza-
tion. Extracellular Ca2+ rush into cytoplasm, resulting in series of cell physiological 
changes ranging from muscular contraction, excitation of neurons, gene expres-
sion, to exocytosis of hormones or neurotransmitters, which can be utilized for 
biosensing.84,85 Detection of the heavy-metal ions was demonstrated using a cardiac 
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cell-based biosensor.86 Beating cardiomyocytes generated periodic extracellular 
potential that was detected by a light-addressable potentiometric sensor. Exposure 
to heavy-metal ions, cardiomyocytes experienced characteristic changes in their 
beating parameters (i.e., frequency, duration, and amplitude) based on the physi-
ological effects of metal ions. Fe3+ and Cu2+ induced very small changes in cardio-
myocytes beating, while Hg2+ and Cd2+ resulted in significant changes in the 
beating pattern. By exploring the frequency-duration shifting in phase diagrams, 
different ions can be distinguished. The device provided an alternative way for 
heavy-metal monitoring and toxicity screening. Human neuroblastoma cells were 
incorporated into a 3D  collagen type-I based biosensor.87,88 Activation of VGCCs 
was demonstrated by supplying high concentration of K+ ions (50 mM) that led to 
depolarization. Intracellular Ca2+ dy namics were transformed into fluorescence 
signals by calcium green-1, a calcium fluorescence indicator, and finally quantified 
using a fluorescence microscope. In addition, the membrane potential dynamics 
were fluorescently quantified using a potentiometric fluorescent dye. 

   G protein coupled receptor — G protein coupled receptors (GPCRs)   are a super 
family of membrane receptors that enable a variety of cytophysiologically relevant 
processes, including visual sensing, gustatory sensing, olfactory sensing, and cell 
density sensing. GPCRs are activated by external signals such as electromagnetic 
radiation and exogenous molecules, including odors, pheromones, hormones, and 
neurotransmitters. The activation of GPCRs results in signal transduction and 

Fig. 3.  Schematic of cell sensing mechanisms. Four types of typical sensing mechanisms are sche-

matically illustrated, including voltage gated channels, GPCR receptors, nuclear receptors, and 

immunoglobulin receptors.
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ultimate cell physiological changes at cellular levels (e.g., cell growth and metasta-
sis) and subcellular levels (e.g., increase in cytosolic calcium ion).23,89 Thus, interac-
tion between GPCRs and ligands or other signal mediators can be used as a sensing 
mechanism for  CBBs. Kang and coworkers reported neuronal micro-circuit arrays 
for drug screening.90 Primary hippocampal neurons were maintained in an  agarose 
microwell with a microelectrode immobilized at the bottom to record drug’s cyto-
physiological effect on neuronal circuit activity. Several drugs (AP, bicuculline, and 
NMDA) were tested using neurotransmitter γ-aminobutyric acid and glutamate as 
agonist or inhibitory receptors. This cell-based biosensor can potentially be a high-
throughput drug-screening platform for excitable cells. Sun and coworkers devel-
oped a microfluidic cell-based biosensor that enables detection of transient 
chemical stimuli using GPCRs with a temporal resolution of milliseconds.91,92 
Spatiotemporally-controllable chemical stimulation of cells was achieved by 
hydrodynamic-gated sample injection.93,94 Endogenous P2Y receptors on the 
membrane of NIH 3T3 fibroblast cells were activated using Adenosine Triphosphate, 
resulting in a series of subcellular signaling cascades, including activation of phos-
pholipase C, hydrolysis of phosphatidylinositol bisphosphate into inositol triphos-
phate (IP3) and diacylglycerol by phospholipase C, binding between IP3 and IP3 
receptors, and Ca2+ release from the internal Ca2+ stores to the cytoplasm. 
Intracellular Ca2+ dynamics was indicated using Fluo-3, an intracellular calcium 
indicator and recorded by a fluorescence microscope. Feng et al., bioengineered 
endogenous P2Y receptors (ATP–GPCRs) into a bullfrog fibroblast cell line and 
coupled these cells with microelectrode arrays for chemical sensing. Bullfrog fibro-
blast cells demonstrated advantages over mammalian cells for cell-based sensing, 
as they can be deployed under ambient atmospheric conditions and are suitable for 
long-term storage.95

N  uclear receptor — Nuclear receptors are a class of endogenous proteins found in 
metazoan cells. Nuclear receptors can sense lipophilic substances such as steroid, 
thyroid hormones and vitamins A and D and regulate the expression of specific 
genes.73,96,97 Genetic engineered Saccharomyces cerevisiae cells with nuclear recep-
tors were demonstrated for d  etection of estrogen.98–100 Saccharomyces cerevisiae 
strains were genetically engineered with a  human androgen receptor, e strogen 
receptor alpha, or estrogen receptor beta together with firefly luciferase initiated by 
a respective hormone responsive promoter. These cells are immobilized in 3D 
polyvinyl acetate and  alginate hydrogel matrix. Detection of 17-β-estradiol, an 
estrogen, was demonstrated with a detection limit of 0.08 µg L−1 and a half maxi-
mal effective concentration of 0.64 µg L−1. Saccharomyces cerevisiae encapsulated in 
alginate microbeads showed a high viability for luminescence measurements even 
after 1 month of storage at −80°C. The assay reproducibility for each test was illus-
trated by coefficient of variation ranging from 4.35 to 18.47%.
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Immunoglo bulin superfamily receptors — Immunoglobulin superfamily recep-
tors are a class of soluble membrane proteins featured with immunoglobulin-like 
structures. Immunoglobulin receptors are found in immune cells (e.g., T and 
B lymphocytes), and they are involved in the recognition and binding of antigen. 
For example, B lymphocytes express B-cell receptors (an immunoglobulin recep-
tor) that allow highly specific sensing of pathogens or toxin via antibody-antigen 
interaction.5 Kim and coworkers developed a strategy to increase the detection 
sensitivity of lymphocyte based biosensor by exploring B cell as antigen presenting 
cells for T cell.101 A confluent layer of B-cells was layered on T cells that were 
immobilized on hydrogel microwells. B cells captured and internalized exogenous 
proteins, proteolyzed these proteins into short peptide s, and further presented 
these short peptides to the contacted T cells. Activation of T-cell-receptors by the 
presented peptides resulted in an increase in the cytosolic  calcium level in T cells, 
which was monitored by fluorescence imaging of calcium via calcium sensitive 
fluorescence dye Fura-2. In addition,  collagen-encapsulated Ped-2E9 cells (a B-cell 
hybridoma) were demonstrated for  CBBs.102 Rapid cytotoxicity assays of pathogens 
or their toxins were achieved by quantitatively measuring alkaline phosphatase 
(ALP) released from infected Ped-2E9 cells. 

2.3  Signal readout systems

Basically,  CHBBs have a signal readout system, which interfaces with cells and 
transduces cellular responses into quantitative or qualitative signals for detection 
of analyte. When cells are cultured on a 2D/3D surface, signal readout from indi-
vidual cells can be obtained using multiple approaches, including electrochemical, 
mechanical, and optical platforms.103–114 However, when cells are encapsulated in 
3D hydrogels,115,116 signal readout is geometrically limited, which makes it difficult 
for some sensing technologies (e.g., electrochemical, mechanical transduction) for 
single-cell analysis. Optical detection becomes a feasible way for single-cell analysis 
in CHBBs due to its advantages such as contactless detection, high spatial resolu-
tion and readability for naked eyes. Especially, bioluminescence provides an alter-
native strategy to deliver observable signals without transducers. In the future, 
microfluidic and lab-chip technologies will have considerable impact on CHBBs 
by monitoring cellular density profiles without the need for labelling. In this sec-
tion, we focus on various sensing platforms from a  CHBB perspective.

2.3.1. Optical-based signal readout systems

Optical detection is a widely-used approach to monitor absorbance, luminescence, 
or fluorescence signals that are functions of cytophysiological changes and cellular 
metabolite production.7 
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Fluorescence detection — In  CHBBs, fluorescence dyes are employed convert phys-
icochemical or biochemical events into fluorescence signals. Alternatively, fluores-
cence genes are fused into cells as a reporter to indicate expression of target genes. 
Diverse fluorescence detection technologies have proven to be invaluable gadgets 
for monitoring molecular changes in cellular mechanisms such as protein and gene 
expression.86,117–119 Fluorescent-labeled gene and protein probes have also been 
employed to monitor cellular function in genetically engineered organisms for dec-
ades.120 Recently, a fluorescence-based sensor has been developed to monitor con-
tinuous blood-glucose levels in vivo using glucose-responsive fluorescent hydrogel 
fibers.121 The implanted fluorescent  PEG-bonded polyacrylamide (PAM) hydrogel 
fibers transmitted fluorescent signals transdermally of the blood-glucose concen-
tration.121 In this platform, the fibrous structure of hydrogels further allowed this 
sensor to remain at the implantation site for a long time period (up to 140 days). 
Thus, a minimally invasive and transdermal hydrogel-based glucose sensor has been 
developed to increase the quality of life of diabetic patients.121 On the other hand, 
the fluorometric imaging plate reader (FLIPR™) and highly sensitive fluorometric 
assays have been developed to assess membrane potential, intracellular calcium 
mobilization and cellular signaling processes.82,122,123 In contrast to other labeling 
assays such as radiolabeling, fluorescence-based methods are safe-to-use, and do 
not cause any mutations and DNA damages as observed in the prolonged exposure 
of radioactive dyes.124–126 However, auto-fluorescence of molecules can potentially 
interfere with fluorescent assays and cause false-positive results.119

Bioluminescence — Bioluminescence describes production and emission of light 
by a living organism. Bioluminescence naturally exists in some microorganisms, 
fishes, and fungi. Bioluminescent microorganisms include Vibrio fischeri and 
Pyrodimium bahamense. For example, Vibrio fischeri is utilized to detect mercury 
and selenium with a detection of limit of 1 ppb.37 Compared to fluorescence, bio-
luminescence has advantages, including no need for light excitation source and long 
emission time. When transfected into cells, bioluminescence genes can be used to 
indicate the expression of a target gene in response to environmental stimuli. For 
example, Michelini and co-workers reported a yeast-based biosensor for biolumi-
nescent detection of androgen-like compounds. Recombinant Saccharomyces 
 cerevisiae cells were genetically modified with a human androgen receptor and a 
reporter gene YIpLuc to indicate activation of the human androgen receptor.99 

Plasmonic detection — Plasmonic-based readout systems are one type of optical 
signal transduction methods that monitor minute changes at the close vicinity of a 
metallic substrate.131–135 Surface plasmon-based approaches report vital informa-
tion in terms of wavelength, extinction intensity and the angle of reflected light, 
which are particularly sensitive to binding and capture events as well 
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as the dielectric properties of medium on the metal substrate.127–131,136 Surface 
plasmon-based detection strategies also provide a great opportunity to tune the 
sensitivity and specificity by altering the type of nanostructures at the sensor sub-
strate.131 Surface plasmon resonance (SPR) approach allows implementing hydro-
gels onto plasmonic substrates, and monitors physiological behavior of cell and 
cellular substances encapsulated in hydrogels. In these platforms, the presence of 
analyte causes hydrogels to expand in volume, and thus, the refractive index differs 
from that of the original state.113 By monitoring local refractive index changes, SPR 
imaging technologies are employed to examine the hydrogel network and assist in 
improving the optimal conditions for large-scale production of biosensor 
arrays.113,137 By changing coupling method (e.g., waveguide coupling) in SPR tech-
niques, the other characteristics of hydrogel film such as thickness can also be 
examined.138 Another plasmonic-based platform, localized surface plasmon reso-
nance (LSPR), utilizes strong electromagnetic response of metal nanoparticles and 
assesses collective oscillation of nanoparticles.139–141 LSPR  biosensing platforms 
have been broadly used to detect nucleic acids, proteins, toxins, and viruses.133,141–145 
Hydrogels have recently been applied to LSPR-based platforms to monitor the 
physiological behavior of cells and to enhance the biosensing capacity of stimuli-
responsive hydrogel-metal nanoparticles for medical applications.146,147 For instance, 
a glucose oxidase was immobilized into the stimuli-responsive hydrogels to evalu-
ate the effect of glucose binding.146 The interparticle distance of silver nanoparticles 
in the hydrogel increased, when glucose was applied to the hydrogels. As a result of 
these interactions, the absorbance intensity of the LSPR peak wavelength decreased, 
and limit of detection was observed to be 10 pM for glucose sensing.146

Holographic sensing — By immobilizing nanoparticles within a hydrogel matrix, 
holographic sensors have been developed by incorporating ionizable monomers 
into hydrogel films.148 In contrast to other optical pH sensors, the shrinkage and 
swelling behavior of hydrogels, were evaluated by monitoring changes in the 
holographic diffraction wavelength of holograms.148 This holographic biosensor 
presented a sensitivity down to mili-pH changes, and this platform was also vali-
dated by quantifying the changes in proton concentrations in milk samples 
undergoing homolactic fermentation in the presence of Lactobacillus casei.148 The 
major obstacle in this method is the fabrication of nanoparticle arrays and the 
need for a frequency doubled Nd-YAG laser.113,148

2.3.2. Electrochemical-based  signal readout systems

Electrochemical sensing finds a variety of applications ranging from pH to con-
ductivity sensing systems.149,150 These systems can also be combined with other 
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 biosensing platforms, including optical and mechanical sensors.151 Hydrogels are 
used as a supporting material, where biomolecules such as DNA, peptides, enzymes 
are immobilized for biomolecular detection. Hydrogels are also utilized as a stabi-
lizing material for the encapsulated bioactive component.152–155 Further, hydrogels 
provide a large surface area, thus increasing the loading capacity and improving 
the detection sensitivity.113,156 Conductometric measurements were used to quan-
tify electrochemical signals from hydrogels.157,158 These platforms utilized interdigi-
tated electrodes and measured the electrical conductivity of hydrogels.137 Recently, 
these signal transduction systems have been used to monitor cellular mechanisms 
such as viability, apoptosis and proliferation, and specific intracellular and extra-
cellular cellular reactions for drug screening.151,160–162

3. Applications

 CHBBs have recently gained a great deal of interest in drug screening, pathogen 
detection, and environmental monitoring. As a sensing unit, cells can quickly 
respond to delicate or drastic stimuli from their microenvironment, and the 
response can be transformed to qualitative and/or quantitative signals for  biosens-
ing. For example, cell morphological changes, altered protein expression profiles, 
and cell viability can be used to directly indicate the impact of environmental 
changes. Often, bioengineered cells are preferably used to detect specific proteins 
and emit fluorescence signals. Here, we summarize the applications of bioengi-
neered cells for rapid pathogen detection and drug screening without reference to 
traditional methods such as enzyme-linked immunosorbent assay (ELISA) or 
polymerase chain reaction (PCR). 

Rider et al. genetically engineered B lymphocytes for specific sensing a variety 
of pathogens at low concentrations.83 First, B cell lines were engineered to stably 
express cytosolic aequorin, as a bioluminescent reporter. Second, these cell lines 
were transfected with plasmids that express antibodies specific for a pathogen of 
interest on the cell surface. The crosslinking of antibodies triggered by their cor-
responding antigens from a specific pathogen can elevate the level of intracellular 
calcium and thus lead to a fluorescence emission by aequorin. As reported, a num-
ber of B cell lines have been developed for a variety of bacteria and viruses includ-
ing Yersinia pestis, orthopoxviruses, Venezuelan equine encephalitis (VEE) virus, 
Escherichia coli strain O157:H7, B. anthracis and foot-and-mouth virus. Most 
importantly, detection can be completed within 3–5 min, and no signal or nucleic 
acid amplification is required. Although the preparation of these cell lines seems to 
be complicated, it takes less than 1h hands-on time over two days, indicating that 
scaling-up of this platform technology can be made economically. Thus, this B cell 
sensing platform can be widely used for pathogen detection in clinical diagnosis, 

b2086_VOL-III_Ch-12.indd   342b2086_VOL-III_Ch-12.indd   342 07-Dec-15   5:45:55 PM07-Dec-15   5:45:55 PM

 G
el

s 
H

an
db

oo
k 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
N

FO
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/1
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



 Cell-Encapsulating Hydrogels for Biosensing   343

b2086  Gels Handbook: Fundamentals, Properties, Applications (In 3 Volumes)

bio-defense, and food safety. Similarly, another study demonstrated that fluores-
cent dye loaded mast cells detected Escherichia coli and Listeria monocytogenes at a 
picomolar level via a chimeric protein (fusion of Fc region of the IgE antibody and 
CD14).163 

Recently, 3D culture has been developed on-chip to sense pathogens101 or assess 
the toxicity of drug candidates.164 For example, Kim et al. developed a T-cell/B-cell 
based microchip biosensor to detect intact pathogens.101 In this biosensor, hydrogel 
microwells were first fabricated. The surface of microwells was then functionalized 
with antibodies for immobilizing T cells in an array format. On the top of the T cell 
layer, antigen-presenting B cells were seeded. When B cells presented specific anti-
gens to T cells via T cell receptors, the level of intracellular calcium accordingly 
increases proportionally to the concentration antigenic peptides. The concentration 
of intracellular calcium can be measured by measuring the release of calcium- 
sensitive fluorescent dyes, which were preloaded. As demonstrated, this live cell array 
quantified a model peptide analyte ranging range 0.05 to 5 µM within minutes.101 

Banerjee et al. reported a portable  CHBBs platform using  collagen-encapsu-
lated B lymphocytes that can detect bacterial contamination and their toxin 
derivatives.102 In this study, they fabricated a Type-I collagen gel matrix, in which 
lymphocyte origin murine Ped-2E9 cells were seeded at a density of 2.5 × 107 cells 
mL−1 in a 48 well plate. The cells were continuously cultured at 37°C for 24–96 h 
prior to addition of bacteria or toxin. It took 3–6 h for bacteria and toxin to diffuse 
through the collagen gel to Ped-2E9 cells and for the cells to secrete ALP. The 
supernatant was then transferred to another 48 well plate, which was preloaded 
with an ALP liquid substrate, leading to a color development. The color intensity 
was measured using a handheld spectrophotometer at a wavelength of 405/595 
nm. Alternatively, the ALP liquid substrate can be added directly to the culture 
plate, and the color development can be measured using a standard spectropho-
tometer. Using this CHBBs platform, the authors achieved rapid detection of 
pathogenic Listeria and Bacillus species and the toxins from these organisms. 
Potentially, this portable platform can be used for improving food safety and envi-
ronmental monitoring. 

Currently, drug discovery, especially at the early stage, relies on cell-based 
assays to screen for therapeutic candidates and to assess toxicities. However, cells 
grown in a 2D format, either on a substrate or in a suspension, may respond dif-
ferently to drug candidates compared to their 3D counterparts in vivo. Accumulating 
evidence has shown that 3D culture, in contrast to 2D planar culture on-dish, can 
better mimic the mechanical, chemical, and biological features of ECM.165–167 Thus, 
3D cell culture arrays have also been used to screen for drug candidates and to 
assess toxicity in a high-throughput manner. For example, Lee et al. fabricated a 
miniaturized 3D cell-culture array system, which consisted of one microchip, 

b2086_VOL-III_Ch-12.indd   343b2086_VOL-III_Ch-12.indd   343 07-Dec-15   5:45:55 PM07-Dec-15   5:45:55 PM

 G
el

s 
H

an
db

oo
k 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
N

FO
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/1
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



344  P. Chen et al.

b2086  Gels Handbook: Fundamentals, Properties, Applications (In 3 Volumes)

named as DataChip, with 1,080 individual cell cultures in  collagen or  alginate gels 
spotted on a functionalized glass slide, and one microchip, termed as MetaChip, 
contained their cytochrome P450 — generated metabolites P450 in a complemen-
tary format.164 When the DataChip was in contact with the MetaChip by stamping, 
the interaction between drug candidates and mammalian cells was initiated. The 
MetaChip was further rinsed, cultured, stained, and subsequently scanned using a 
fluorescence microarray scanner. The analysis of IC50 was used to assess the toxic-
ity of drug candidates and their P450-generated metabolites. The IC50 values 
obtained from the DataChip were similar to that obtained on 2D and 3D microti-
ter plates despite nearly 2,000-fold miniaturization. However, due to the nature of 
cytotoxicity analysis, the assay time was fairly long (more than 3 days). Nevertheless, 
the DataChip allowed the high-throughput screening of drug candidates given the 
number of cell spots arrayed on the DataChip.

In another study, a 3D hydrogel-based microchip was developed for anticancer 
drug analysis, in which controlled morphology of microstructure was created 
without using photomasks.168 For fabrication, cell suspension in hydrogel precur-
sors was injected into a microchannel and local UV photopolymerization was 
applied to the photosensitive precursors with the aid a fluorescence microscope to 
form cell encapsulated hydrogel structures in the microchannel. The unreacted 
hydrogel precursors were then washed away using Phosphate-buffered saline and 
replaced with anti-cancer drug candidates. Via this system, the authors examined 
the apoptosis in HepG2 and A549 cells in the presence of two intracellular redox 
parameters such as glutathione (GHS) and reactive oxygen species (ROS). The cell 
viability and the levels of these intracellular redox parameters were monitored 
using a fluorescence microscope. Compared to the assessment on a 96-well plate, 
the 3D culture on-chip demonstrated similar levels of intracellular GSH and ROS 
contents. This method allows selective encapsulation of cells in hydrogels for 3D 
drug screening.

4. Conclusions and Perspectives

E ncapsulating cells into hydrogels presents an emerging and promising strategy to 
develop cell-based biosensors. Hydrogels provide a cytocompatible 3D microenvi-
ronment for cell immobilization, maintenance and packaging. In addition, cell-
encapsulating hydrogels mimic native tissues and provide an attractive drug 
screening platform. However,  CHBBs are still limited by multiple challenges for 
real-world practice. First, new hydrogels need to be developed to enable a long-
term cell preservation with high cell viability, especially for mammalian cells. 
Second, cells are randomly encapsulated in hydrogels, which brings a challenge in 
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standardizing  CHBBs. Thus, fine cell manipulation technologies are needed to pat-
tern individual cells in 3D hydrogels down to a single-cell resolution. Third, 
CHBBs inherit common issues of  CBBs such as lack of selectivity and inability for 
quantitative analysis. To address these challenges, development of synthetic biol-
ogy and genetic technologies is highly needed. Despite these challenges, enabling 
technologies such as 3D bioprinting, microfluidics, microscale assembly and 
microscale opto-electromechanical systems provide significant opportunities to 
advance CBBs toward practical applications. For example, microfluidic technolo-
gies can isolate rare cells from cell mixtures and manipulate individual cells to 
physiochemical stimuli for  biosensing.91–94,169–171 Microscale assembly of hydrogels 
significantly facilitates design and fabrication of CHBBs for both basic and clinical 
research.32–36,44 With integration of miniaturized electronic/optical signal read
out systems,172 CHBBs can provide a powerful analytical toolbox for broad applica-
tions in environmental monitoring, drug screening, and clinical diagnostics in the 
near future.
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