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ARTICLE INFO ABSTRACT

Keywords: Rapid and efficient processing of sexual assault evidence to accelerate forensic investigation and decrease
Sexual assault casework backlogs is urgently needed. Therefore, the standardized protocols currently used in forensic labora-
Screening tories can benefit from continued innovation to handle the increasing number and complexity of samples being

Sperm identification
Computer vision
Cellphone imaging
Microfluidics

submitted to forensic labs. To our knowledge, there is currently no available rapid and portable forensic
screening technology based on a confirmatory test for sperm identification in a sexual assault kit. Here, we
present a novel forensic sample screening tool, i.e., a microchip integrated with a portable cell phone imaging
platform that records and processes images for further investigation and storage. The platform (i) precisely and
rapidly screens swab samples (<15 min after sample preparation on-chip); (ii) selectively captures sperm from
mock sexual assault samples using a novel and previously published SLeX-based surface chemistry treatment (iii)
separates non-sperm contents (epithelial cells and debris in this case) out of the channel by flow prior to imaging;
(iv) captures cell phone images on a portable cellphone-integrated imaging platform, (v) quantitatively differ-
entiates sperm cells from epithelial cells, using a morphology detection code that leverages Laplacian of Gaussian
and Hough gradient transform methods; (vi) is sensitive within a forensic cut-off (>95% accuracy) compared to
the manual counts; (vii) provides a cost-effective and timely solution to a problem which in the past has taken a
great deal of time; and (viii) handles small volumes of sample (20 puL). This integration of the cellphone imaging
platform and cell recognition algorithms with disposable microchips can be a new direction toward a direct
visual test to screen and differentiate sperm from epithelial cell types in forensic samples for a crime laboratory
scenario. With further development, this integrated platform could assist a sexual assault nurse examiner (SANE)
in a hospital or sexual assault treatment center facility to flag sperm-containing samples prior to further
downstream testing.

1. Introduction

According to a UN Women report, 35-70% of women worldwide
have experienced sexual violence at least once during their lifetime,
with lasting and untenable effects on their physical and mental health
[1]. These cases are often strongly hindered by social stigma and psy-
chological harm on their route through the criminal justice system, with
over 75% of rape cases never being reported [2]. The Rape, Abuse &

Incest National Network (RAINN) reports that only 5 out of 1000 per-
petrators face imprisonment consequences. Part of the problem is a
bottleneck in evidence testing. For example, a National Institute of
Justice (NIJ)-led study performed an audit of sexual assault kits (SAKs)
in Detroit, finding 11,303 kits in storage spanning 30 years, of which
8707 had never been submitted to a laboratory for testing [3].

This is not only due to the relatively late advent of modern forensic
DNA testing in the mid-1990s. Interviews with detectives, prosecutors,
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sexual assault nurse examiners (SANEs), and other relevant individuals
revealed that this astounding backlog could be attributed in part to the
lack of consistent SAK processing protocols between collaborating
agencies, budget limitations that restricted the number of staff who
could process these samples, laboratory capacity issues, and the lack of
specialized sexual assault units [3,4]. This problem is not unique to
Detroit: an exhaustive research review has suggested that there may be
upwards of 200,000 untested SAKs in police possession between 1982
and 2007 across the United States [4]. The demand for forensic testing
is increasing and creating new opportunities for scientific advances in
the field, as forensic technology can help cases move forward through
these bottlenecks in the system [5].

Forensic samples not only include body swabs from SAKs but can
also include crime scene samples, where traces of semen could be
present on garments, linens, etc. The rapid collection of the perpe-
trator’s DNA sample, whenever possible, is critical to enhance the
probability of identifying the perpetrator [6]. This essentially involves
identifying the presence of human sperm, but this is challenging due to
the overwhelming presence of non-sperm matter (the victim’s own
cells, other non-cellular biological matter, general debris, cloth fibers,
etc.). Further, there are various presumptive and confirmatory tests for
sperm due to varying test sensitivities and specificities, and the dif-
ferent kinds of samples collected (biological, environmental, etc.) [6,7].

Sample screening is commonly performed using UV light, alter-
native light sources, acid phosphatase (AP) overlay, or P-30 (PSA,
prostate specific antigen). All of these methods are presumptive tests for
semen identification. Light-based systems indicate nucleic material in
all cell types, thus they cannot differentiate between cell types and may
result in more false positives. Since AP activity presents at low levels in
vaginal fluid and bacteria, it is not an ideal sperm-specific test. While P-
30 is more specific than AP, the P-30 test may not be a stringent con-
firmatory test for seminal fluid since this biomarker can also be found in
the urine of some males, typically in cases with prostate issues [8-16].
As reported in the literature, P-30 exists at very low concentrations in
female urine and it can also be found in other biological fluids, which
could lead to false positive results. In addition, the urine of infant males
contains fairly high levels of P-30 (detectable with the P-30 tests) be-
tween the ages of ~2—6 months that may interfere with the results
[17]. Evaluating all of these current methods, the only gold standard
confirmatory test for seminal fluid is to directly identify the presence of
sperm in a sample by employing a microscope. However, visualizing
sperm requires specific instrument configurations and methodologies,
including microscopy imaging and staining (using Christmas Tree dye),
which requires the analyst to perform many steps in an equipped la-
boratory environment that is difficult to adapt as a confirmatory test at
the forensic scene [18].

To our knowledge, there are currently no available rapid and por-
table forensic screening technologies that are based on a confirmatory
test for sperm. Here, we integrate a range of techniques in microfluidics
and imaging [19-30] to present a novel sample-screening tool, i.e.,
microchip integrated with an innovative cell phone imaging platform
(Fig. 1A). This integrated platform records and processes images and
transfers the data to a virtual machine for further investigation and
storage within minutes (Fig. 1B). Eventually, this innovative platform
technology could help to efficiently channel those samples containing
sperm toward downstream forensic analysis (Fig. 1C).

2. Materials and methods
2.1. Imaging

2.1.1. Fabrication of cell phone-based imaging system

Cell phone-based system was designed using SolidWorks software,
and printed with the Omega sonic 1900 BT-3D printer. The system
consisted of a white-LED, polarizers, 10x objective, lens (convex) were
integrated into 3-D printout of the design box at the certain distances.
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The imaging box on the system was designed to have a slider to control
focal points for both lens and objective to be able to obtain better
images with higher magnification. The microfluidic chip was then
placed right after the lens at a distance within its focal length (Fig. 1,
Supplementary Figure S1).

2.1.2. Microchip fabrication

The microfluidic chip was designed with one channel and two ports
(inlet and outlet with 0.65 mm in diameter) for sampling/washing. The
chip consisted of a PMMA surface with 3.2 mm of thickness, a double-
side adhesive (DSA) layer with 50 pm of thickness, and a glass cover
slide. The chip parameters were designed using CorelDRAW software
(Ottawa, Ontario, Canada), and the chip components were cut using
Versa LASER (Universal Laser Systems Inc., Scottsdale, AZ). Briefly, the
PMMA layer provided the top layer where both inlet and outlet ports
were milled, and the DSA film enabled the microchannel. The glass
slide was modified with surface chemistry agents to capture sperm.

2.1.3. SLeX surface chemistry for sperm-specific binding

Glass slides were washed with absolute EtOH (200 proof) under
sonication for 15 min, and they were dried with the filtered dry air right
after the cleaning. Later, they were treated with oxygen plasma (ION3,
Corona, CA) (100 mW, 1% oxygen) for 1.5 min, and then placed in
3-MPS solution (4% v/v in absolute ethanol) for 30 min at room tem-
perature. Therefore, the 3-MPS provided thiol groups during saliniza-
tion process. To remove unbound chemicals, the surfaces were cleaned
with ethanol and dried with the filtered dry air. Later, the chip com-
ponents (PMMA, DSA, and glass slide) were assembled, and succinimide
groups were decorated by incubating GMBS (10 mM in DMSO:PBS
(1:1)) for 45 min at room temperature. The channels were then cleaned
with PBS. To immobilize SLeX molecules, we strategized to develop
hydrazide groups via 4-ABAH reagent (0.25 mg/mL in 1:1 (v:v) ratio of
DMSO:PBS). Again, another PBS wash was applied to remove unbound
chemical residues. SLeX molecules with 0.1 mg/mL concentration was
applied to the microchannels, and incubated overnight at +4 °C.
Another PBS wash was performed. BSA (3% (w:v) in PBS) was applied
as an anti-fouling agent, and it was incubated for an hour at room
temperature. This protocol is based on previous work published by our
group [38]. This treatment allowed for sperm cells incubated in the
chip for an hour to be specifically bound, such that gently washing the
chip through with PBS would flow out all nonspecifically bound cells
and debris. No lysis is performed here so that all cells remain intact for
morphological analysis, as well as any further processing as needed (for
the bound, sperm cell fraction, or the unbound, non-sperm cell frac-
tion).

2.1.4. Preparation of cell samples, and fluorescent staining

Sperm used in all experiments were prepared from raw semen
samples, and epithelial cells were from buccal swab samples taken from
inside of the cheeks using a flocked swab.

For staining of confirmatory sperm assays in the microscope ima-
ging, we used DAPI (4’,6-diamidino-2-phenylindole) which binds to
DNA (deoxyribose nucleic acid), according to the following procedure:

Sperm (diluted semen sample) were first centrifuged at 1200 rpm
for 3 min at room temperature, and the supernatant was removed and
diluted with DAPI dye (990 puL PBS (phosphate buffered solution) and
10 uL DAPI). We then incubated the mixture for 10 min at room tem-
perature. Later, we centrifuged the mixture again at 1200 rpm for 3 min
at room temperature. The supernatant was removed, and the pellet was
resuspended with 1 mL PBS. This step was repeated one more time to
make sure removing dye artifacts. For the sampling and imaging, 20 pL
of stained cells was added into the microchannel.

2.1.5. Microfluidic chip imaging in a traditional fluorescent microscope
To test the cell binding and distribution on chip, we imaged our
chips on a traditional laboratory optical microscope with fluorescence
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Fig. 1. (A) Sample handling workflow (<15 min in total), from sample loading through cellphone image acquisition to analysis. (B) Image processing workflow, from
original cellphone image through three main steps until final sperm detection result: (1) initial morphology-based sperm selection with a Laplacian of Gaussian blob
detection method, (2) exclusion of epithelial cells in the sperm’s surroundings by a pixel sum threshold, (3) Hough gradient transform on the binarized image with a
minimum distance parameter to reduce overcounting of the same sperm cell. (C) Proposed adaptation of this integrated platform into a forensic workflow scenario.

capabilities. For this, we used a Zeiss fluorescent microscope for
brightfield imaging (in phase contrast mode, for optimal contrast for
sperm localization). We also used this microscope for fluorescent ima-
ging (with various dyes and channels, but ultimately focusing on DAPI
staining, as outlined earlier with a UV (ultraviolet) excitation channel).
These images were taken at various magnifications, using 10 x, 20 X,
and 40 x objective lenses, with further 10X magnification on each.

2.1.6. Assembly and components of portable imaging platform

The portable imaging platform as shown in Fig. 1A was constructed
using the following components in sequence, as laid out in Supple-
mentary Fig. S1:

(1) LED (light emitting diode) block (a), controlled by a simple switch
circuit (b) and a battery block containing two replaceable/re-
chargeable 3 V batteries (c). This LED block consisted of a broad-
spectrum white LED, and three additional colored LED modules for
fluorescence imaging. The LEDs were powered by the battery block
by a simple circuit that included a switch for controlling the LED
colors.

(2) Objective lens (d) -we used a 10X achromatic objective lens from
AmScope (SKU: A10X-V300) with numerical aperture of 0.25, and
tube length of 160 mm (DIN standard).

(3) Aspheric lens (e) -we used a Mounted Geltech Aspheric Lens from
Thorlabs (part number C240TME-A) with f-number = 8.00 mm,
numerical aperture of 0.50, and anti-reflective coating, with a range
between 400 — 600 nm.

(4) Focal length adjustment levers that are 3D-printed (f, g).

(5) iPhone 5 camera and screen-endpoint of our imaging module.

Assembly consists of 3D-printing of the three main components
which slot into each other, along with 2 smaller components which are

focal length adjustment levers.

2.1.7. User workflow and focus adjustment on portable imaging platform

The phone is loaded into the device (simply slid into the custom-
made phone holder, which can be made for different types of phones).
The sample-loaded chip is simply inserted into the platform, and then,
the light is switched on. Following this, the focal plane is chosen using
the adjustment lever on the side of the device, with the field of view
directly visible on the phone screen. Magnification (via digital zoom),
fine range of focus, and image capture are controlled using the intuitive
interface of the phone screen.

2.2. Sperm detection algorithms

2.2.1. Data transfer and analysis platform

Images captured on the phone are stored in the phone’s local library
as JPEG images at 50% digital zoom, and are transferred via Bluetooth,
internet, or cable transfer to a laptop or computer for analysis. Our
image analysis platform is currently run on an open-source python-
based platform (which can be run from a downloadable jupyter note-
book which has a simple and visual user interface). For future in-
tegration, we are developing a smartphone application to perform the
analysis directly on the cellphone and eliminate the need for a separate
computer.

The following sections describe different analysis strategies that
were performed on the images, including some that were tested but not
used in the final implementation.

Algorithm A: Watershed, flood filling, and edge detection-based
approach to sperm identification

Initial segmentation attempts resulted in over segmentation despite
applying label-based watershed algorithm. This is because small frag-
ments of cell debris were also counted as sperm. However, after a close
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examination of underlying sperm images, we concluded that sperm
cells had higher intensities and more ellipsoidal appearance compared
to epithelial cells. Therefore, after converting RGB images into grays-
cale ones, we continued by blurring the input images so that adaptive
thresholding would yield more smooth results. Then, adaptive thresh-
olding with Gaussian kernel was applied to each input image. To ensure
that sperm cells are selectively separated from other small cell debris,
intensity range of thresholding was tailored according to average in-
tensity of sperm cells calculated beforehand. Then using morphological
image operations and a 2-by-2 square kernel each image has been di-
lated twice. This step has been followed by additional closing and
erosion operations to guarantee structural stability of segmented cells.
Finally, segmented instances were filtered according to their eccen-
tricity, area as well as distance from each other. This filtering was
important as it allowed us to only detect sperm and not other objects of
same size and intensity such as small air bubbles or debris. Detected
cells were overlaid on the original image and they have been clearly
indicated for visual investigation using bounding box rectangles. This
method had comparable performance to the other strategies in many
ways, but had two false negative cases, which is why we proceeded
with other image analysis strategies due to the importance of having
100% sensitivity for a rule-out test as much as possible.

The following image analysis strategies are implemented in jupyter
notebook using Python 2 and various open-source modules for maximal
accessibility and ease of use.

Algorithm B: Hough gradient approach for images with sperm cells
and no epithelial cells

This algorithm is similar to the previous one in some ways, but uses
the Hough gradient transform for sperm selection rather than a
Laplacian of Gaussian. This allows for more sperm-specific morphology
parameters to be selected that are less likely to overlap with the char-
acteristics of epithelial cells. It is also a much faster algorithm by about
an order of magnitude, although both are fast (<10 s per image for this
one, <1 min per image for the previous algorithm). There is still a pixel
sum threshold in this method to avoid counting epithelial cells.
However, it has lower specificity and higher rates of false positives with
epithelial cells. Therefore, it was not selected in case of any remnant
epithelial cells even after washing.

2.3. Image pre-processing for subsequent analysis

Raw JPEG images from the phone are first located and uploaded,
then converted from the RGB (red green blue) image format to grays-
cale format, which flattens a 3-dimensional array into a 2-dimensional
array by removing the color channels and representing the pixels of the
image in the range of 0-256. The next step in preprocessing involves
segmenting the image by applying a binary threshold of 140, which was
selected manually for optimal results are testing on a batch of sample
images. The borders of the image are also cropped to reduce the effects
of spherical aberration in order to avoid mislabeling of sperm along the
borders. For this, 20% of the area of the image on each border is ex-
cluded.

2.4. Sperm selection with Hough gradient method

This method takes the pre-processed image and applies a Hough
circle transform to it, with a number of parameters selected for optimal
results are testing on a batch of samples images. We use the
HoughCircles in Python’s application of OpenCV (an open-source image
analysis toolbox), namely cv2. We run this function on the pre-pro-
cessed (grayscale and binarized) image, choosing the Hough Gradient
method. We provide the following parameters:

e A minimum distance between detectable circles of 20 pixels.
e Inverse ratio of the accumulator resolution to the image resolution,
provided as 1.
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e Parameter 1 with a value of 5 (the higher threshold of the two
passed to the Canny edge detector, as stated in the documentation
for the function code).

e Parameter 2 with a value of 6 (the accumulator threshold for the
circle centers at the detection stage). The value of this parameters
controls the specificity of the circle detector.

o Minimum and maximum radius for the detectable circles (5 and 15
pixels, respectively).

This function returns a list of detected circles under these para-
meters, with their corresponding locations in the pixel array, and radii.

2.5. Improving selectivity of the Hough transform by adding a local region
pixel sum threshold

Similarly to the Log method, the Hough Gradient Method alone did
not result in adequate specificity for sperm detection, returning some
false positives in the case of epithelial cells in the image that were not
removed in the binarization. To exclude these false positives, we added
a step to the image processing that is similar to the one used after the
blob detection approach. Here we look at the local region around each
Hough-identified circle, an area that is 100 px by 100 px wide, centered
around the detected circle center (keeping in mind that the detected
circles have a maximum radius of 15 px/maximum diameter of 30 px).
The pixels in this 100 px by 100 px region are summed, and a threshold
is applied to this pixel sum. If the sum exceeds 9200, the detected circle
is marked as a sperm. If the sum is below 9200, it is excluded as a false
positive from an epithelial cell patch. This threshold was selected after
examining a large number of samples images and their detected circles
to determine the optimal threshold for separating true and false sperm
heads.

2.6. Final image processing result

The result of the image processing workflow above, which runs in a
few seconds, is a list of “true” detected sperm heads with their locations
marked on the base image. This can be compared side-by-side with the
original image to visually verify whether detected sperm heads are truly
so, or if any are missed. The result also includes a sperm count for each
image run through the code.

Algorithm C: Blob detection approach for images with mixed sperm
and epithelial cells

2.6.1. Image pre-processing for subsequent analysis

For these complex images which contain a mixture of different cell
types and debris from a swab sample, raw JPEG images from the phone
are first located and uploaded, then converted from the RGB (red green
blue) image format to grayscale format, which flattens a 3-dimensional
array into a 2-dimensional array by removing the color channels and
representing the pixels of the image in the range of 0-256. The image is
then inverted in preparation for running the Laplacian of Gaussian.

2.7. Blob detection with Laplacian of Gaussian

Next, the feature module is loaded from scikit-image, and the in-
verted image is passed in for blob detection, with the goal of pre-
identifying sperm selectively by their morphology (shape, size, in-
tensity). We used the Laplacian of Gaussian (LoG) method of blob de-
tection, since it is the most accurate of the three blob detection methods
here, although it is the slowest. The runtime is still below one minute
per image. The parameters we used are as follows:

e The minimum standard deviation of the Gaussian kernel is set to 3

o The maximum standard deviation of the Gaussian kernel is set to 15

e The threshold, or absolute lower bound for scale space maxima, is
set to 0.12.
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Fig. 2. Microscope images of sperm cells on chip, stained with DAPI. Scale bar = 50 um, magnification = 200 X. (A) Brightfield image. (B) Pre-analysis image:
Fluorescent channel image (same location as (A)), converted to greyscale. (C) Post-analysis image: Segmented image with thresholded binarization, and circles
identified with OpenCV Hough Transform, with 98% accuracy compared to manual counting.

Microscope images of sperm cells mixed with epithelial cells (from a buccal swab) on chip, stained with DAPI. Scale bar =100 pm, magnification = 100 x. (D)
Brightfield image of sample. (E) Pre-analysis image: Fluorescent channel image (same location as (D)), converted to greyscale. (F) Post-analysis image: Segmented
image with binary threshold, and circles identified with OpenCV Hough Transform, with 98% accuracy compared to manual counting for 50 sperm cells and 20

epithelial cells.

e With this combination of parameters chosen through testing a range
of the parameters on an image training set, we aimed to capture the
size range and intensity range at which sperm cells would occur in
our images.

2.7.1. Improving selectivity of the Laplacian of Gaussian by adding a local
region pixel sum threshold

In this section, we look at the local region around each LoG-iden-
tified circle, an area that is 100 px by 100 px wide, centered around the
detected circle center (keeping in mind that the detected circles have a
maximum radius of 15 px/maximum diameter of 30 px). The pixels in
this 100 px by 100 px region are summed, and a threshold is applied to
this pixel sum. If the sum exceeds 9524, the detected circle is marked as
a sperm. If the sum is below 9524, it is excluded as a false positive from
an epithelial cell patch. This threshold was selected after examining a
large number of samples images and their detected circles to determine
the optimal threshold for separating true and false sperm heads.

2.8. Reducing overcounting of multiple sperm heads in the same location

In some cases, multiple sperm heads were being counted in the same
location due to looping through the image multiple times. To avoid this
overcounting error, we included a step in which the Hough gradient
transform is used to implement a minimum distance parameter and
exclude such overcounting.

3. Results
Distinguishing between sperm cells and non-sperm objects is one of

the critical challenges in accurately detecting sperm visually. In vaginal
swabs, this often means a sample containing a predominant load of

vaginal epithelial cells, although there can also be other cell types
(yeast, bacterial) and other debris. For our experiments, we prepared
mock samples by mixing raw, unwashed semen samples with fresh
buccal swabs taken on flocked swabs. This mixture contained epithelial
cells, sperm cells, debris of various kinds, and potentially a small
number of other cells types as may have been introduced in the buccal
swab or the semen aliquot. We followed two strategies to address this
detection challenge, leveraging both image processing and surface
chemistry techniques. First, we designed our software algorithms to
select specifically between sperm and non-sperm (epithelial cells,
debris) with the strategies described above. Second, we experimentally
incorporated a design choice in our microfluidic chip to wash away any
non-sperm objects and keep the bound sperm on surface.

3.1. Cellphone imaging platform

We conducted the imaging of sperm samples on our microfluidic
chip using our custom-built cell phone-based platform. The portable
imaging platform is designed to be as simple as possible for (1) ease of
use, (2) reducing potential of malfunction in the field, (3) low weight
and portability, and (4) low cost to enable distribution. As optical
components can add significant cost, weight, and complexity to any
imaging platform, we finalized our design with a small and efficient set
of components as described in detail in the Supplementary Fig. S1 and
in Section 4. Assembly is fast, intuitive, straightforward, and easily
adjustable, without requiring any special equipment after the 3D-
printed components are printed in polymer and the LED circuit is sol-
dered together. Samples were easily loaded and adjusted to focus on the
region of interest, followed by image capture and transfer for analysis,
according to the workflow described in Fig. 1A.
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3.2. Image processing algorithms to detect sperm in microscope images

Before developing an image processing algorithm with cellphone
images which are challenging to work with, we imaged our microfluidic
chips in a high-quality microscope-camera system. Before loading, the
cells were stained with DAPI (with a staining protocol as described in
the Section 4) to highlight sperm heads. This simple image processing
algorithm used the fluorescent channel images to screen for sperm
heads by their morphology using the Hough gradient transform, and
implementing a maximum radius parameter to exclude DAPI-stained
epithelial cell nuclei which are larger than the fluorescence signal from
stained sperm heads (as shown in Fig. 2). This quantification performed
very well with the fluorescent microscope images, demonstrating 98%
accuracy compared to the manual count, in both sperm-only sample
cases (Fig. 2A-C) and sperm-epithelial cell mixed sample cases
(Fig. 2D-F). These high-quality, high-resolution images of the samples
with high signal-to-noise ratio for the fluorescently stained cell com-
ponents allowed us to develop an initial sperm-counting algorithm that
reliably detected cells of interest. These assays were developed to set a
starting point for the subsequent experiments with cellphone imaging,
where our goal was then to count the sperm without the need for
fluorescence imaging.

3.3. Image processing algorithms to detect sperm in cellphone images

The microfluidic chips loaded with samples were imaged using our
cellphone imaging system, and custom algorithms developed to analyze
these images based on the methods initially developed using the mi-
croscope images as covered previously in Fig. 2. While the cellphone
system is inexpensive, portable, and easy to operate, it comes at the cost
of images that have lower resolution, contain some spherical aberration
at the borders, and are brightfield only, as can be seen in Fig. 3A. This
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calls for accurate detection and specificity from brightfield images
without fluorescence labels. Thus, the goal of these image analysis
methods was to selectively detect sperm in lower quality, brightfield
images even in the presence of confounding objects such as epithelial
cells and debris of various kinds.

Images captured on the cellphone are transferred to a standard
laptop or desktop computer via Bluetooth, internet, or cable transfer, as
per the convenience of the user. On a computer, the automated algo-
rithm is easily and rapidly run by a user with minimal training from a
downloadable, open source jupyter notebook, which is a visual and
accessible interface of python. It can analyze individual images at a
time, or a large set of images together to output the results for each of
them efficiently, for whole chip coverage. This is especially important
in achieving sensitivity when looking for rarely observed sperm cells, of
which there may be a small absolute number of cells found throughout
the chip, not all of which will occur in a single field of view.

We tested various image processing strategies for sperm specific
detection, selecting a final algorithm on the basis of optimal perfor-
mance with sensitivity, specificity, and quantification accuracy.
Watershed methods been very popular in cell segmentation challenges,
and one of our methods (we will refer to it as Algorithm A) using wa-
tershed and flood-filling edge detection demonstrated very good per-
formance, but had some false negative cases [31-33]. We thus pro-
ceeded with other image analysis strategies due to the importance of
having 100% sensitivity for a rule-out test as much as possible. Another
method used the circle-finding Hough gradient transform to select
sperm cells by morphology [34,35]. This method (referred to as Algo-
rithm B) was comparably accurate and fast (<10 s per image), but with
higher rates of false positives from epithelial cells. It was therefore not
selected in favor of a higher-specificity algorithm.

The results of the final algorithm, which we will call Algorithm C,
are described in Fig. 3. Algorithm C had several steps to maximize

3 sperm counted
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Fig. 3. Images of sperm cells mixed with cheek epithelial cells (from a buccal swab) on cellphone imaging prototype. Scale bar =100 um, magnification = 10 X. (A)
Raw brightfield image. (B) Post-analysis image: Original image overlaid with circles identified using OpenCV Hough Transform and local ROI pixel sum threshold.
Analysis parameters used were Laplacian of Gaussian-based blob detection with a threshold of 0.12, a pixel sum threshold of 9524 for epithelial cell removal, and a
Hough gradient transform with minimum distance parameter of 20 pixels to exclude overcounting error. (C) Confusion matrix for sperm detection in various
cellphone images containing no cells, epithelial cells only, and a mixture of sperm and epithelial cells. “Positives” are sperm-containing images, while “negatives” are
images without sperm (but may contain epithelial cells). Total number of images tested = 57. (D) Correlation of automated counts to average of four manual
counters. The coefficient of correlation (R) is 0.709. (E) Bland-Altman plot comparing the results of the automated count with the average of four manual counters.

The mean difference between manual and automated sperm counts is 0.39.
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sperm selection sensitivity, as well as reducing epithelial cell or debris
counting error to maximize specificity, to be valuable as a reliable
screening test with minimal false negatives and false positives. For
these cellphone images with a mixture of sperm and epithelial cells, the
three main steps were as follows:

(1) In the first step (Fig. 1B(1)), sperm were selected by their mor-
phology using an inverted Laplacian of Gaussian-based blob de-
tection method. Although this is the slowest of the blob detection
methods, it is the most accurate. It was therefore selected for re-
liability without significant costs in processing time; the total run-
time of the code is still under one minute per image. It has been
used widely in various computer vision applications due to its good
edge detection performance, although it has not to our knowledge
been demonstrated for the analysis of biological (including for-
ensic) samples in cellphone images [36-39]. Parameters used in
final algorithm:

a Minimum standard deviation for the Gaussian kernel was 3.
b Maximum standard deviation for the Gaussian kernel was 15.
¢ The threshold for scale space maxima was 0.12.

(2) In the second step (Fig. 1B(2)), epithelial cells were excluded by
adding a pixel sum threshold, which excluded epithelial cells in the
immediate region around a detected blob if its cell body covered a
much larger area than a sperm cell would. We found that the blob
detection in the previous step did not on its own result in adequate
specificity for sperm detection, returning some false positives in the
case of epithelial cells in the image that were not removed in the
binarization. Although epithelial cells are generally much larger
than sperm heads and significantly more heterogeneous, both of
which are properties which should be excluded in blob detection,
there are some instances of false positives. To exclude them, we
added this step to the image processing, which significantly
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10  Fig. 4. Heatmaps showing distributions of sperm cells
on a surface chemistry-enhanced chip, tiled images
taken on a microscope before and after washing.
Sperm cells were detected using a Hough circle trans-
form-based algorithm, from fluorescence images of
DAPI-stained sperm cells in our chip. (A) Chip pre-
washing, with 18,141 sperm cells detected. Cells are
more broadly distributed. (B) Chip pre-washing, with
16,414 sperm cells detected. Cells are clustered into
regions of higher concentration. Calculated sperm re-
tention on-chip with surface chemistry after washing:
90.1%.

improved specificity. Parameters used:

a Local region of interest (ROI) around each detected blob: 100 by
100 pixels.

b Binary thresholding of the ROI with threshold 150.

¢ Blob was passed to the next step if the sum of pixels in the post-
threshold ROI exceeded 9524.

(3) In the third step (Fig. 1B (3)), we included a minimum distance
parameter to reduce overcounting of sperm cells in the same loca-
tion as the algorithm looped through the image in multiple itera-
tions. This helped to improve the quantification accuracy of the
algorithm.

a Circles of a fixed radius were assigned to each of the locations
(screened from previous step) on a blank copy of the image (no
cells).

b Hough gradient transform from OpenCV was run on the above
image, passed in with the radius parameters of the assigned cir-
cles, and with a minimum distance threshold of 20 pixels.

The output of this algorithm includes the original image (Fig. 3A),
next to a copy of it overlaid with the algorithm-detected sperm
(Fig. 3B), as well as a sperm count for that image. The user can compare
these side-by-side to visually verify whether detected sperm heads are
truly so, or if any are missed.

This sperm detection algorithm was tested over 57 samples in total,
including 26 samples that contained sperm (labelled “positive”) and 31
that did not contain sperm (labelled “negative”). This algorithm de-
monstrated 100.0% sensitivity and 93.5% specificity against manual
counting, as shown in the confusion matrix depicted in Fig. 3C (there
were two instances of false positives). These two examples of false
positives (which can be seen in Fig. S12) appeared to both be small
debris with a very similar size to sperm. Further, Fig. 3D quantifies how
well the resultant automated sperm count correlates to the manual
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count, with a coefficient of correlation of 0.709; Fig. 3E shows Blan-
d-Altman plot and a difference of means of 0.39. There is slight over-
counting (especially when sperm heads are clustered very close to-
gether). Based on this sample image set, it showed reliable classification
between images that contained or did not contain sperm. It would
therefore be a suitable candidate to be developed into a screening test
to guide sample selection for DNA analysis, due to its excellent sensi-
tivity and very high specificity.

3.4. Microfluidic chip and surface chemistry for epithelial cell separation

To develop strategies to distinguish sperm from non-sperm objects
in a swab sample, we prepared mock samples by mixing raw, unwashed
semen samples with fresh buccal swabs taken on flocked swabs. This
mixture contained epithelial cells, sperm cells, debris, and possibly
other cell types that are naturally present in these samples. To add to
our image processing algorithms, we designed our microfluidic chip to
wash away the epithelial cells and keep the bound sperm on surface. To
this end, we utilized an earlier technique developed in our lab to se-
lectively remove non-sperm cells and debris from a microfluidic
channel as characterized thoroughly in our previous publication [40].
This method adds chemical treatment to the same microfluidic chip we
use for sample loading and sperm visualization and capture. The che-
mical treatment achieves selective sperm binding by borrowing a mo-
lecule from nature: Sialyl-Lewis®, or SLeX, an oligosaccharide sequence
on the zona pellucida of an egg [41]. This molecule, when applied to
our microfluidic chip surface, exhibits strong sperm binding, allowing
them to be retained when the chips are gently washed, while sig-
nificantly reducing the epithelial cell fraction. This previous work
showed a 70-92% sperm capture efficiency [40]. We show in Fig. 4 that
90.1% of sperm cells are retained on the channel after the wash step
indicating that sperm were not significantly lost as a result of washing
from the channels. Fig. 4 includes a tiled microscope image of the whole
chip with sperm binding, before and after washing (to remove epithelial
cells), and the quantification results of each. This shows that the dis-
tribution of sperm slightly shifts, but that overall sperm retention is
high. The non-sperm fraction that is washed out can be retained for
further professing and genotyping since there is no lysis or damage to
either fraction of the sample.

3.5. Image processing algorithms to detect sperm in cellphone images with
sperm cells only

In the case of sperm-positive vs. sperm-negative classification on
chips with sperm cells only and minimal epithelial cell matter and
debris in the background due to selective sperm binding and epithelial
cell washing, the sperm detection algorithm (Algorithm C) leads to
excellent (95.9%) detection accuracy and better quantification of sperm
amounts (the coefficient of correlation with sperm counting in this case
is 0.823, as shown in Fig. 5D). In this case, there is slight undercounting
in cases of sperm clustering (the difference of means was —0.33 as seen
in the Bland—-Altman plot in Fig. 5E), but the coefficient of correlation is
still improved compared to images with a mixture of sperm and epi-
thelial cells. Most importantly, sensitivity (100%), specificity (93.5%),
and overall accuracy is excellent. The inherently better signal to noise
ratio in these images allows for more accurate quantification to aid the
user in guiding further analysis decisions. While we obtained better
correlation of quantification with one of our alternative strategies based
on the Hough gradient transform, it had worse performance when en-
countering epithelial cells. Although we are able to remove the majority
of epithelial cells with the previously described wash step, we cannot
assume 100 % removal so we opted for the previously described algo-
rithm that is more selective in the face of epithelial cells. As a con-
firmatory test for semen that can be followed up with visual examina-
tion if needed, it is important to prioritize better sensitivity and
specificity over quantification correlation.
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4. Discussion

We have shown two strategies to accurately count sperm in the
presence of epithelial cells. First, we run a python-based algorithm to
use Laplacian of Gaussian and/or Hough gradient transform to selec-
tively detect sperm cells, with additional methods to increase specificity
in the presence of non-sperm objects (which can include a variety of
other cell types and debris, but in this case we focused on epithelial
cells from a buccal swab, and incidental debris). However, the presence
of other cells can add errors and reduce quantification accuracy. Thus,
our second (additional) strategy is to selectively bind sperm on the
surface of the channels, and to wash away all other objects, leveraging
the specificity enabled by the SLeX surface chemistry as we reported
earlier in detail [40]. Even when there are some epithelial cells left
behind that are nonspecifically bound, our image processing algorithm
allows us to detect sperm with higher quantification accuracy in addi-
tion to excellent sensitivity and specificity.

While cellphone images have poorer resolution and more spherical
aberration than higher-quality microscope images, the combination of
the objective lens and aspheric lens allows us to overcome some of these
limitations when enhanced with our image processing algorithm. Thus,
we were able to produce good quality images at magnification, with the
user advantages that come with a cellphone-based platform. Using this,
we can detect sperm very reliably as shown in Figs. 3 and 5, with the
significant advantages of our platform being portable, inexpensive, and
having an intuitive, easy-to-use interface that would require minimal
training for an operator (e.g. SANE) to incorporate into their practice.
Further, the system is versatile as the 3D printed phone holder design
can be adjusted to fit different smartphone models for different users.

We tested the code for mainly brightfield images to minimize the
operational requirements for the user around fluorescent imaging on
the cell phone. To add further specificity after selective image re-
cognition and physical removal of the majority of epithelial cells, we
could potentially add a third additional step: we can stain the cells with
DAPI to identify locations of cells, as we demonstrated in microscope
imaging in Fig. 2, in concordance with the bright field image processing
as described above. This would aid in the detection of an infrequently
occurring sperm cell if it is completely covered by an overlapping,
larger epithelial cell. One limitation of this is that DAPI is not a sperm-
specific stain, although stained sperm heads and epithelial cell nuclei
have different and distinguishable sizes as we showed. An alternative
solution can be to increase sperm specificity by using stains such as the
well-validated commercial product SPERM HY-LITER kit which uses a
sperm-specific fluorescent antibody in addition to DAPI, instead of
DAPI only [42-44]. By adapting our cellphone system to include
fluorescence imaging capabilities, these stains can be used to add fur-
ther confirmation. Other than fluorescence, we can explore depletion of
epithelial cells before or after binding of sperm to the SLeX-coated
surface using chemical or enzymatic methods such as lysis using pro-
teinase K or hydroxide/EDTA-based treatment [45]. This integrated
platform eventually could be used in a crime laboratory environment
and possibly with further development of the chip and the sample
processing workflow, in a hospital or sexual assault treatment center
facility by a trained SANE (Fig. 1C). The algorithmic detection can be
used as an aid to streamline sample analysis for users with high
workloads such as for the problems we are targeting, while still al-
lowing direct visual examination of the sample for expert confirmation.
The intended implementation of this test only uses one-tenth of the
collected evidence sample to perform this screening, so that the prac-
titioner can direct the remaining aliquot of a positive sample for further
testing using standard molecular methods for detection of STR’s, Y-
STRs, etc. This can offer a viable solution in hospital settings where
microscopic examination or other sperm quantification methods cannot
easily be implemented due to lack of resources, space, appropriate
training, or in crime laboratories where long periods of time are needed
to sufficiently examine a low/no sperm count sample. In the future, we
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Fig. 5. Images of sperm cells on cellphone imaging prototype. Scale bar = 100 um, magnification = 10 X. (A) Raw brightfield image. (B) Post-analysis image:
Original image overlaid with circles identified using OpenCV Hough Transform and local ROI pixel sum threshold. (C) Confusion matrix for sperm detection in

various cellphone images containing no cells, epithelial cells only, and a mixture

of sperm and epithelial cells. “Positives” are sperm-containing images, while

“negatives” are images without sperm (but may contain epithelial cells). Total number of images tested = 49. (D) Correlation of automated counts to average of four
manual counters. The coefficient of correlation (R) is 0.823. (E) Bland-Altman plot comparing the results of the automated count with the manual count. The mean

difference between manual and automated sperm counts is —0.33.

will conduct a validation study of our microchip integrated with cell
phone imaging system and correlate with currently used methods in
forensic laboratories to create a next generation system to accelerate
the sample screening process for forensic investigations.
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