Cationic Hofmeister series on the ion – macromolecule interactions is finally making sense!

In a recent collaborative work, the molecular mechanism of the interactions between macromolecules and Hofmeister cations is elucidated. Although all metal cations are on average depleted from the macromolecule/water interface, more strongly hydrated metal cations (Ca2+, Mg2+) are able to locally accumulate around the amide oxygen. Such weakly favorable interactions aided partially offset of the salting-out effect. Surprisingly, the cations approach the interface together with chloride counter anions as solvent-shared ion pairs. (read more…)

A new article on exploring the surface propensity of molecular ions in ionic liquid mixtures.

In this study, in collaboration with Suzer Lab, we have demonstrated the surface propensity of TFSI anion over BF4 anion in mixture of ionic liquids. We have developed a new methodology including measurements of angle-resolved X-Ray photoelectron spectroscopy and contact angle along with a signal attenuated modeling to report on the specific surface enrichment of different species in liquid mixtures. This new multi-instrumental method is applicable to various liquid systems. (Read more)